Seaweeds: Valuable Ingredients for the Pharmaceutical Industries

  • Evi Amelia Siahaan
  • Ratih Pangestuti
  • Se-Kwon Kim
Chapter
Part of the Grand Challenges in Biology and Biotechnology book series (GCBB)

Abstract

Seaweeds have been used since time immemorial in East Asia as spice, delicacy, and traditional medicines. In the recent decades, extensive studies have been done to establish health-promoting activities and pharmacological actions of seaweed-derived bioactive materials. These bioactive materials and extracts have been shown to possess a wide spectrum of biological actions, including antioxidant, anti-inflammatory, antivirus, anticancer, antihypertensive, fat-lowering, and neuroprotective activities. Hence, seaweeds have gained much importance in pharmaceutical product development due to their rich bioactive compounds including polysaccharides, pigments, phlorotannins, peptides, mineral, and vitamins. Intensive efforts are still being made to isolate and identify new bioactive ingredients derived from seaweeds with potential medicinal, health, or pharmaceutical activities. The present chapter aims to narrate pharmaceutical potential and challenge of bioactive materials present in seaweeds.

Keywords

Seaweeds Materials Pharmaceutical Bioactive Ingredients 

References

  1. 1.
    Smit AJ (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16(4):245–262Google Scholar
  2. 2.
    Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597Google Scholar
  3. 3.
    Cunha L, Grenha A (2016) Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar Drugs 14(3):42PubMedCentralGoogle Scholar
  4. 4.
    McHugh DJ (1987) Production and utilization of products from commercial seaweeds. FAO Fisheries Technical Paper 288, pp 58–115Google Scholar
  5. 5.
    Mclachlan J (1985) Macroalgae (seaweeds): industrial resources and their utilization. Plant Soil 89:137–157Google Scholar
  6. 6.
    Tseng C (2001) Algal biotechnology industries and research activities in China. J Appl Phycol 13:375–380Google Scholar
  7. 7.
    McHugh DJ (2003) A guide to the seaweed industry. FAO Fisheries Technical Paper 441Google Scholar
  8. 8.
    Chandini SK, Ganesan P, Suresh P et al (2008) Seaweeds as a source of nutritionally beneficial compounds-a review. J Food Sci Technol 45:1–13Google Scholar
  9. 9.
    Murata M, Nakazoe J (2001) Production and use of marine algae in Japan. JARQ 35(4):281–290Google Scholar
  10. 10.
    Jiao G, Yu G, Zhang J et al (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9(2):196–223PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kraan S (2012) Algal polysaccharides, novel applications and outlook. In: Chang C-F (ed) Carbohydrates—comprehensive studies on glycobiology and glycotechnology. InTech, Croatia, pp 489–532Google Scholar
  12. 12.
    Rioux LE, Turgeon SL, Beaulieu M (2007) Characterization of polysaccharides extracted from brown seaweeds. Carbohydr Polym 69(3):530–537Google Scholar
  13. 13.
    Pangestuti R, Kim SK (2016) Pharmaceutical importance of marine algal-derived carbohydrates. In: Kim SK (ed) Marine glycobiology: principles and applications. CRC Press, Boca Raton, pp 227–233Google Scholar
  14. 14.
    Venkatesan J, Anil S, Kim SK, Shim MS (2016) Seaweed polysaccharide-based nanoparticles: preparation and applications for drug delivery. Polymers 8(30):1–25Google Scholar
  15. 15.
    Venkatesan J, Kim SK, Shim MS (2016) Antimicrobial, antioxidant, and anticancer activities of biosynthesized silver nanoparticles using marine algae Ecklonia cava. Nanomaterials 6(235):1–18Google Scholar
  16. 16.
    Fawcett D, Verduin JJ, Shah M, Sharma SB, Poinern GEJ (2017) A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. J Nanosci 8013850:1–15Google Scholar
  17. 17.
    Lahaye M, Robic A (2007) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8(6):1765–1774PubMedGoogle Scholar
  18. 18.
    Jaulneau V, Lafitte C, Jacquet C, Fournier S et al (2010) Ulvan, a sulfated polysaccharide from green algae, activates plant immunity through the jasmonic acid signaling pathway. J Biomed Biotechnol 525291:1–11Google Scholar
  19. 19.
    Bryhni E (1978) Quantitative differences between polysaccharide compositions in normal differentiated Ulva mutabilis and the undifferentiated mutant lumpy. Phycologia 17:119–124Google Scholar
  20. 20.
    De Reviers B, Leproux A (1993) Characterization of polysaccharides from Enteromorpha intestinalis (L.) link, chlorophyta. Carbohydr Polym 22(4):253–259Google Scholar
  21. 21.
    Lahaye M, Cimadevilla EAC, Kuhlenkamp R et al (1999) Chemical composition and 13C NMR spectroscopic characterisation of ulvans from Ulva (Ulvales, Chlorophyta). J Appl Phycol 11:1–7Google Scholar
  22. 22.
    Lahaye M, Gomez-Pinchetti JL, Del-Rio MJ et al (1995) Natural decoloration, composition and increase in dietary fibre content of an edible marine algae, Ulva rigida (Chlorophyta), grown under different nitrogen conditions. J Sci Food Agric 68(1):99–104Google Scholar
  23. 23.
    Lahaye M, Jegou D (1993) Chemical and physical-chemical characteristic of dietary fibres from Ulva lactuca (L.) Thuret and Enteromorpha compressa (L.) Grev. J Appl Phycol 5:195–200Google Scholar
  24. 24.
    Lai MF, Li CF, Li CY (1994) Characterization and thermal behavior of six sulphated polysaccharides from seaweeds Ulva arasakii. Food Hydrocol 8(3–4):215–232Google Scholar
  25. 25.
    McKinnell JP, Percival E (1962) The acid polysaccharide from the green seaweed Ulva lactuca. J Chem Soc:2082–2083Google Scholar
  26. 26.
    Medcalf DG, Root CF, Craney CL (1972) Chemical characterization of mucilaginous polysaccharides from Ulvaceae species native to Puget Sound. In: Nisizawa K (ed) Proceedings of the 7th international seaweed symposium. University of Tokyo Press, Tokyo, pp 541–547Google Scholar
  27. 27.
    Yamamoto M (1980) Physiochemical studies on sulfated polysaccharides extracted from seaweeds at various temperatures. Agric Biol Chem 44(3):589–593Google Scholar
  28. 28.
    Lahaye M, Ray B (1996) Cell-wall polysaccharides from the marine green alga Ulva rigida (ulvales, cholorophyta)—NMR analysis of ulvan oligosaccharides. Carbohydr Res 283:161–173PubMedGoogle Scholar
  29. 29.
    Bemiller JN (1967) Acid-catalyzed hydrolysis of glycosides. Adv Carbohydr Chem Biochem 22:25–108PubMedGoogle Scholar
  30. 30.
    Conrad HE (1980) The acid lability of the glycosidic bonds of L-iduronic acid residues in glycosaminoglycans. Biochem J 191(2):355–363PubMedPubMedCentralGoogle Scholar
  31. 31.
    Fransson LA, Roden L, Spach ML (1968) Automated ion-exchange chromatography of uronic acids and uronic acid containing oligosaccharides. Anal Biochem 23(2):317–330PubMedGoogle Scholar
  32. 32.
    Knutsen SH, Myslabodski DE, Larsen B et al (1994) A modified system of nomenclature for red algal galactans. Bot Mar 37(2):163–170Google Scholar
  33. 33.
    Santos GA, Doty MS (1983) Agar from some Hawaiian red algae. Aquat Bot 16:385–389Google Scholar
  34. 34.
    Jeon YJ, Athukorala Y, Lee J (2005) Characterization of agarose product from agar using DMSO. Algae 20(1):61–67Google Scholar
  35. 35.
    Rasmussen RS, Morrissey MT (2007) Marine biotechnology for production of food ingredients. Adv Food Nutr Res 52:237–292PubMedGoogle Scholar
  36. 36.
    Lahaye M, Rochas C (1991) Chemical structure and physico-chemical properties of agar. Hydrobiologia 221(1):137–148Google Scholar
  37. 37.
    Armisen R, Galatas F (2000) Agar. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. Woodhead, Cambridge, pp 21–39Google Scholar
  38. 38.
    Morrice LM, McLean MW, Long WF et al (1984) Porphyran primary structure. Hydrobiologia 116–117(1):572–575Google Scholar
  39. 39.
    Rees DA, Conway E (1962) The structure and biosynthesis of porphyran—a comparison of some samples. Biochem J 84(2):411–416PubMedPubMedCentralGoogle Scholar
  40. 40.
    McCandless EL, Craigie JS (1979) Sulphated polysaccharides in red and brown algae. Planta 112:201–212Google Scholar
  41. 41.
    Usov AI (1998) Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocol 12(3):301–308Google Scholar
  42. 42.
    Antonopoulos A, Favetta P, Helbert W et al (2005) On-line liquid chromatography electrospray ionization mass spectrometry for the characterization of κ- and ι-carrageenans. Application to the hybrid ι-/ν-carrageenans. Anal Chem 77(13):4125–4136PubMedGoogle Scholar
  43. 43.
    Cui SW, Wang Q (2006) Functional properties of carbohydrates—polysaccharide gums. In: Hui YH (ed) Handbook of food science technology and engineering, vol 1. CRC Press, Boca Raton, pp 1–15Google Scholar
  44. 44.
    Van de Velde F, Antipova AS, Rollema HS et al (2005) The structure of κ/ι-hybrid carrageenans II. Coil-helix transition as a function of chain composition. Carbohydr Res 340(6):1113–1129PubMedGoogle Scholar
  45. 45.
    Qin Y (2008) Alginate fibres: an overview of the production processes and applications in wound management. Polym Int 57(2):171–180Google Scholar
  46. 46.
    Subramanian V, Anantharaman P, Kathiresan K (2016) Brown algal polysaccharide. In: Kim SK (ed) Marine glycobiology: principles and applications. CRC Press, Boca Raton, pp 379–392Google Scholar
  47. 47.
    Haug A, Myklestad S, Larsen B et al (1967) Correlation between chemical structure and physical properties of alginates. Acta Chem Scand 21:768–778Google Scholar
  48. 48.
    Apoya M, Ogawa H, Nanba N (2002) Alginate content of farmed Undaria pinnatifida (Harvey) Suringar from the three bays of Iwate, Japan during harvest period. Bot Mar 45:445–452Google Scholar
  49. 49.
    Skriptsova A, Khomenko V, Isakov V (2004) Seasonal changes in growth rate, morphology and alginate content in Undaria pinnatifida at the northern limit in the Sea of Japan (Russia). J Appl Phycol 16:17–21Google Scholar
  50. 50.
    Percival E, McDowell RH (1967) Chemistry and enzymology of marine algal polysaccharides. Academic, LondonGoogle Scholar
  51. 51.
    George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs. J Control Release 114:1–14PubMedGoogle Scholar
  52. 52.
    Kylin H (1913) Biochemistry of sea algae. Phys Chem 83:171–197Google Scholar
  53. 53.
    Patankar MS, Oehninger S, Barnett T et al (1993) A revised structure for fucoidan may explain some of its biological activities. J Biol Chem 268:21770–21776PubMedGoogle Scholar
  54. 54.
    Honya M, Mori H, Anzai M et al (1999) Monthly changes in the content of fucans, their constituent sugars and sulphate in cultured Laminaria japonica. Hydrobiologia 398:411–416Google Scholar
  55. 55.
    Skriptsova AV, Shevchenko NM, Zvyagintseva TN et al (2010) Monthly changes in the content and monosaccharide composition of fucoidan from Undaria pinnatifida (Laminariales, Phaeophyta). J Appl Phycol 22:79–86Google Scholar
  56. 56.
    Usov AI, Smirnova GP, Klochkova NG (2001) Polysaccharides of algae. 55 Polysaccharide composition of several brown algae from Kamchatka. Russ J Bioorganic Chem 27:395–399Google Scholar
  57. 57.
    Senthilkumar K, Manivasagan P, Venkatesan J et al (2013) Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Int J Biol Macromol 60:366–374PubMedGoogle Scholar
  58. 58.
    O’Sullivan L, Murphy B, McLoughlin P et al (2010) Prebiotics from marine macroalgae for human and animal health applications. Mar Drugs 8:2038–2064PubMedPubMedCentralGoogle Scholar
  59. 59.
    Devillé C, Damas J, Forget P et al (2004) Laminarin in the dietary fibre concept. J Sci Food Agric 84:1030–1038Google Scholar
  60. 60.
    Wijesekara I, Pangestuti R, Kim SK (2011) Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 84(1):14–21Google Scholar
  61. 61.
    Jiao L, Li X, Li T et al (2009) Characterization and anti-tumor activity of alkali-extracted polysaccharide from Enteromorphaintestinalis. Int Immunopharmacol 9(3):324–329PubMedGoogle Scholar
  62. 62.
    Leiro JM, Castro R, Arranz JA et al (2007) Immunomodulating activities of acidic sulphate polysaccharides obtained from the seaweed Ulva rigida C. Agardh. Int Immunopharmacol 7(7):879–888PubMedGoogle Scholar
  63. 63.
    Qi H, Zhang Q, Zhao T et al (2006) In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorg Med Chem Lett 16(9):2441–2445PubMedGoogle Scholar
  64. 64.
    Yu P, Li N, Liu X et al (2003) Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta). Pharmacol Res 48(6):543–549Google Scholar
  65. 65.
    Zhang HJ, Mao WJ, Fang F et al (2008) Chemical characteristics and anticoagulant activities of a sulfated polysaccharide and its fragments from Monostroma latissimum. Carbohydr Polym 71(3):428–434Google Scholar
  66. 66.
    Costa LS, Fidelis GP, Cordeiro SL et al (2010) Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed Pharmacother 64:21–28PubMedGoogle Scholar
  67. 67.
    Lee JB, Hayashi K, Hashimoto M et al (2004) Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chem Pharm Bull 52(9):1091–1094PubMedGoogle Scholar
  68. 68.
    Lee JB, Hayashi K, Maeda M et al (2004) Antiherpetic activities of sulfated polysaccharides from green algae. Planta Med 70:813–817PubMedGoogle Scholar
  69. 69.
    Farias EH, Pomin VH, Valente AP et al (2008) A preponderantly 4-sulfated, 3-linked galactan from the green alga Codium isthmocladum. Glycobiology 18:250–259PubMedGoogle Scholar
  70. 70.
    Qi HM, Zhang QB, Zhao TT et al (2005) Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Int J Biol Macromol 37:195–199PubMedGoogle Scholar
  71. 71.
    Qi HM, Zhao TT, Zhang QB et al (2005) Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). J Appl Phycol 17:527–534Google Scholar
  72. 72.
    Hayakawa Y, Hayashi T, Lee JB et al (2000) Inhibition of thrombin by sulfated polysaccharides isolated from green algae. Biochim Biophys Acta Protein Struct Mol Enzymol 1543:86–94Google Scholar
  73. 73.
    Charles AL, Chang CK, Wu ML et al (2007) Studies on the expression of liver detoxifying enzymes in rats fed seaweed (Monostroma nitidum). Food Chem Toxicol 45:2390–2396PubMedGoogle Scholar
  74. 74.
    Takano R, Iwane-Sakata H, Hayashi K et al (1998) Concurrence of agaroid and carrageenan chains in funoran from the red seaweed Gloiopeltis furcata Post. Et Ruprecht (Cryptonemiales, Rhodophyta). Carbohydr Polym 35:81–87Google Scholar
  75. 75.
    Kim JK, Cho ML, Karnjanapratum S et al (2011) In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from Enteromorpha prolifera. Int J Biol Macromol 49:1051–1058PubMedGoogle Scholar
  76. 76.
    Li B, Liu S, Xing R et al (2013) Degradation of sulfated polysaccharides from Enteromorpha prolifera and their antioxidant activities. Carbohydr Polym 92:1991–1996PubMedGoogle Scholar
  77. 77.
    Teng Z, Qian L, Zhou Y (2013) Hypolipidemic activity of the polysaccharides from Enteromorpha prolifera. Int J Biol Macromol 62:254–256PubMedGoogle Scholar
  78. 78.
    Rao HBR, Sathivel A, Devaki T (2004) Antihepatotoxic nature of Ulva reticulata (Chlorophyceae) on acetaminophen-induced hepatoxicity in experimental rats. J Med Food 7:495–497Google Scholar
  79. 79.
    Usui T, Asari K, Mizuno T (1980) Isolation of highly purified fucoidan from Eisenia bicyclis and its anticoagulant and antitumor activities. Agric Biol Chem 44:2Google Scholar
  80. 80.
    Xing RG, Liu S, Yu HH et al (2005) Preparation of high-molecular weight and high-sulfate content chitosans and their potential antioxidant activity in vitro. Carbohydr Polym 61:148–154Google Scholar
  81. 81.
    Lahaye M, Brunel M, Bonnin E (1997) Fine chemical structure analysis of oligosaccharides produced by an ulvan-lyase degradation of the water-soluble cell-wall polysaccharides from Ulva sp. (Ulvales, Chlorophyta). Carbohydr Res 304:325–333PubMedGoogle Scholar
  82. 82.
    Kaeffer B, Benard C, Lahaye M et al (1999) Biological properties of ulvan, a new source of green seaweed sulfated polysaccharides, on cultured normal and cancerous colonic epithelial tells. Planta Med 65:527–531PubMedGoogle Scholar
  83. 83.
    Margret RJ, Kumaresan S, Ravikumar SA (2009) Preliminary study on the anti-inflammatory activity of methanol extract of Ulva lactuca in rat. J Environ Biol 30:899–902PubMedGoogle Scholar
  84. 84.
    Chiu YH, Chan YL, Li TL et al (2012) Inhibition of Japanese encephalitis virus infection by the sulfated polysaccharide extracts from Ulva lactuca. Mar Biotechnol 14:468–478PubMedGoogle Scholar
  85. 85.
    Sathivel A, Raghavendran HRB, Srinivasan P et al (2008) Anti-peroxidative and anti-hyperlipidemic nature of Ulva lactuca crude polysaccharide on D-Galactosamine induced hepatitis in rats. Food Chem Toxicol 46:3262–3267PubMedGoogle Scholar
  86. 86.
    Tabarsa M, Han JH, Kim CY et al (2012) Molecular characteristics and immunomodulatory activities of water-soluble sulfated polysaccharides from Ulva pertusa. J Med Food 15:135–144PubMedGoogle Scholar
  87. 87.
    Qi H, Liu X, Zhang J et al (2012) Synthesis and antihyperlipidemic activity of acetylated derivative of ulvan from Ulva pertusa. Int J Biol Macromol 50:270–272PubMedGoogle Scholar
  88. 88.
    Noda H (1993) Health benefits and nutritional properties of nori. J Appl Phycol 5:255–258Google Scholar
  89. 89.
    Takano R, Hayashi K, Hara S et al (1995) Funoran from the red seaweed Gloiopeltis complanata: polysaccharides with sulphated agarose structure and their precursor structure. Carbohydr Polym 27:305–311Google Scholar
  90. 90.
    Yoshizawa Y, Enomoto A, Todoh H et al (1993) Activation of murine macrophages by polysaccharide fractions from marine algae (Porphyra yezoensis). Biosci Biotechnol Biochem 57:1862–1866PubMedGoogle Scholar
  91. 91.
    Yoshizawa Y, Ametani A, Tsunehiro J et al (1995) Macrophage stimulation activity of the polysaccharide fraction from a marine alga (Porphyra yezoensis): structure-function relationships and improved solubility. Biosci Biotechnol Biochem 59:1933–1937PubMedGoogle Scholar
  92. 92.
    Tsuge K, Okabe M, Yoshimura T et al (2004) Dietary effect of porphyran from Porphyra yezoensis on growth and lipid metabolism of Sprague-Dawley rats. Food Sci Technol Res 10:147–151Google Scholar
  93. 93.
    De Clercq E (2000) Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med Res Rev 20:323–349PubMedGoogle Scholar
  94. 94.
    Witvrouw M, Este JA, Mateu MQ et al (1994) Activity of a sulfated polysaccharide extracted from the red seaweed Aghardhiella tenera against human immunodeficiency virus and other enveloped viruses. Antivir Chem Chemother 5:297–303Google Scholar
  95. 95.
    Luescher-Mattli M (2003) Algae, a possible source for new drugs in the treatment of HIV and other viral diseases. Curr Med Chem 2:219–225Google Scholar
  96. 96.
    Prajapati VD, Mahereriya PM, Jani GK et al (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97–112PubMedGoogle Scholar
  97. 97.
    Campo VL, Kawano DF, da Silva DB et al (2009) Carrageenans: biological properties, chemical modifications and structural analysis. Carbohydr Polym 77:167–180Google Scholar
  98. 98.
    Mazumder S, Ghosal PK, Pujol CA et al (2002) Isolation, chemical investigation and antiviral activity of polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta). Int J Biol Macromol 31:87–95PubMedGoogle Scholar
  99. 99.
    Nakashima H, Kido Y, Kobayashi N et al (1987) Purification and characterization of an avian myeloblastosis and human immunodeficiency virus reverse transcriptase inhibitor, sulfated polysaccharides extracted from sea algae. Antimicrob Agents Chemother 31:1524–1528PubMedPubMedCentralGoogle Scholar
  100. 100.
    Camara RBG, Costa LS, Fidelis GP et al (2011) Heterofucans from the brown seaweed Canistrocarpus cervicornis with anticoagulant and antioxidant activities. Mar Drugs 9:124–138PubMedPubMedCentralGoogle Scholar
  101. 101.
    Bilan MI, Usov AI (2008) Structural analysis of fucoidans. Nat Prod Commun 3:1639–1648Google Scholar
  102. 102.
    Cumashi A, Ushakova NA, Preobrazhenskaya ME et al (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17:541–552PubMedGoogle Scholar
  103. 103.
    Wijesinghe WAJP, Jeon YJ (2012) Biological activities and potential industrial applications of fucose rich sulphated polysaccharides and fucoidans from brown seaweeds: a review. Carbohydr Polym 88:13–20Google Scholar
  104. 104.
    Nagaoka M, Shibata H, Kimura-Takagi I et al (1999) Structural study of fucoidan from Cladosiphon okamuranus Tokida. Glycoconj J 16:19–26PubMedGoogle Scholar
  105. 105.
    Shimizu J, Wada-Funada U, Mano H et al (2005) Proportion of murine cytotoxic T cells is increased by high molecular-weight fucoidan extracted from Okinawa mozuku (Cladosiphon okamuranus). J Health Sci 51:394–397Google Scholar
  106. 106.
    Teruya T, Konishi T, Uechi S et al (2007) Anti-proliferative activity of oversulfated fucoidan from commercially cultured Cladosiphon okamuranus Tokida in U937 cells. Int J Biol Macromol 41:221–226PubMedGoogle Scholar
  107. 107.
    Kawamoto H, Miki Y, Kimura T et al (2006) Effects of fucoidan from Mozuku on human stomach cell lines. Food Sci Technol Res 12:218–222Google Scholar
  108. 108.
    Shibata H, Iimuro M, Uchiya N et al (2003) Preventive effects of Cladosiphon fucoidan against Helicobacter pylori infection in Mongolian gerbils. Helicobacter 8:59–65PubMedGoogle Scholar
  109. 109.
    Shibata H, Kimura-Takagi I, Nagaoka M et al (2000) Properties of fucoidan from Cladosiphon okamuranus Tokida in gastric mucosal protection. Biofactors 11:235–245PubMedGoogle Scholar
  110. 110.
    Thomes P, Rajendran M, Pasanban B et al (2010) Cardioprotective activity of Cladosiphon okamuranus against isoproterenol induced myocardial infraction in rats. Phytomedicine 18:52–57PubMedGoogle Scholar
  111. 111.
    Anastase-Ravion S, Carreno MP, Blondin C et al (2002) Heparin-like polymers modulate proinflammtory cytokine production by lipopolysaccharide-stimulated human monocytes. J Biomed Mater Res 60:375–383PubMedGoogle Scholar
  112. 112.
    Chevolot L, Foucault A, Chaubet F et al (1999) Further data on the structure of brown seaweed fucans: relationship with anticoagulant activity. Carbohydr Res 319(1–4):154–165PubMedGoogle Scholar
  113. 113.
    Colliec-Jouault S, Millet J, Helley D et al (2011) Effect of low-molecular-weight fucoidan on experimental arterial thrombosis in the rabbit and rat. J Thromb Haemost 1:1114–1115Google Scholar
  114. 114.
    Foley SA, Szeqezdi E, Mulloy B et al (2011) An unfractionated fucoidan from Ascophyllum nodosum: extraction, characterization, and apoptotic effects in vitro. J Nat Prod 74:1851–1861PubMedGoogle Scholar
  115. 115.
    Hoffman R, Paper DH, Donaldson J et al (1995) Characterization of a laminarin sulfate which inhibits basic fibroblast growth-factor binding and endothelial-cell proliferation. J Cell Sci 108:3591–3598PubMedGoogle Scholar
  116. 116.
    Luyt CE, Meddahi-Pellé A, Ho-Tin-Noe B et al (2003) Low-molecular-weight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia. J Pharmacol Exp Ther 305:24–30PubMedGoogle Scholar
  117. 117.
    Matou S, Helley D, Chabut D et al (2002) Effect of fucoidan on fibroblast growth factor-2-induced angiogenesis in vitro. Thromb Res 106:213–221PubMedGoogle Scholar
  118. 118.
    Miao HQ, Elkin M, Aingorn E et al (1999) Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phosphorothioate oligodeoxynucleotides. Int J Cancer 83:424–431PubMedGoogle Scholar
  119. 119.
    Percival E (1968) Glucuronoxylofucan, a cell-wall component of Ascophyllum nodosum. Carbohydr Res 7:272–277Google Scholar
  120. 120.
    Renn DW, Noda H, Amano H et al (1994) Antihypertensive and antihyperlipidemic effects of funoran. Fish Sci 60:423–427Google Scholar
  121. 121.
    Ale MT, Maruyama H, Tamauchi H et al (2011) Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int J Bio Macromol 49:331–336Google Scholar
  122. 122.
    Beress A, Wassermann O, Tahhan S et al (1993) A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucus vesiculosus. J Nat Prod 56:478–488PubMedGoogle Scholar
  123. 123.
    Bilan MI, Grachev AA, Ustuzhanina NE et al (2002) Structure of a fucoidan from brown seaweed Fucus evanescens. Carbohydr Res 337:719–730PubMedGoogle Scholar
  124. 124.
    Mourão PA, Pereira MS (1999) Searching for alternatives to heparin: sulfated fucans from marine invertebrates. Trends Cardiovasc Med 9:225–232PubMedGoogle Scholar
  125. 125.
    Pereira MS, Mulloy B, Mourão PA (1999) Structure and anticoagulant activity of sulfated fucans. Comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J Biol Chem 274:7656–7667PubMedGoogle Scholar
  126. 126.
    Nakamura T, Suzuki H, Wada Y (2006) Fucoidan induces nitric oxide production via p38 mitogen-activated protein kinase and NF-κB-dependent signaling pathways through macrophage scavenger receptors. Biochem Biophys Res Commun 343:286–294PubMedGoogle Scholar
  127. 127.
    Park HS, Kim GY, Nam TJ et al (2011) Antiproliferative activity of fucoidan was associated with the induction of apoptosis and autophagy in AGS human gastric cancer cells. J Food Sci 76:T77–T83PubMedGoogle Scholar
  128. 128.
    Synytsya A, Kim WJ, Kim SM et al (2010) Structure and antitumor activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohydr Polym 81:41–48Google Scholar
  129. 129.
    Yang JW, Yoon SY, Oh SJ et al (2006) Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase. Biochem Biophys Res Commun 346:345–350PubMedGoogle Scholar
  130. 130.
    Ermakova S, Sokolova R, Kim SM et al (2011) Fucoidans from Brown seaweeds Sargassum hornery, Ecklonia cava, Costaria costata: structural characteristics and anticancer activity. Appl Biochem Biotechnol 164:841–850PubMedGoogle Scholar
  131. 131.
    Yamamoto I, Takahashi M, Tamura E et al (1984) Antitumor activity of edible marine algae: effect of crude fucoidan fractions prepared from edible brown seaweed against L-1210 leukemia. Hydrobiology 117:145–148Google Scholar
  132. 132.
    Nishino T, Yokoyama G, Dobahi K et al (1989) Isolation, purification and characterization of fucose-containing sulfated polysaccharides from the brown seaweed Ecklonia kurome and their blood-anticoagulant activities. Carbohydr Res 186:119–129PubMedGoogle Scholar
  133. 133.
    Nishino T, Aizu Y, Nagumo T (1991) The influence of sulfate content and molecular weight of a fucan sulfate from the brown seaweed Ecklonia kurome on its antithrombin activity. Thromb Res 64:723–731PubMedGoogle Scholar
  134. 134.
    Nishino T, Kiyohara H, Yamada H et al (1991) An anticoagulant fucoidan from the brown seaweed Ecklonia kurome. Phytochemistry 30:535–539PubMedGoogle Scholar
  135. 135.
    Hu JF, Geng MY, Zhang JT et al (2001) An in vitro study of the structure-activity relationships of sulfated polysaccharide from brown algae to its antioxidant effect. J Asian Nat Prod Res 3:353–358PubMedGoogle Scholar
  136. 136.
    Kang SM, Kim KN, Lee SH et al (2011) Anti-inflammatory activity of polysaccharide purified from AMG-assistant extract of Ecklonia cava in LPS-stimulated RAW264.7 macrophages. Carbohydr Polym 85:80–85Google Scholar
  137. 137.
    Rioux LE, Turgeon SL, Beaulieu M (2010) Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris. Phytochemistry 71:1586–1595PubMedGoogle Scholar
  138. 138.
    Takahashi M (1983) Studies on the mechanism of host mediated antitumor action of fucoidan from a brown alga Eisenia bicyclis. J Jpn Soc Reticuloendothel Syst 22:269–283Google Scholar
  139. 139.
    Hoshino T, Hayashi T, Hayashi K et al (1998) An antivirally active sulfated polysaccharide from Sargassum horneri (Turner) C. Agardh. Biol Pharm Bull 21:730–734PubMedGoogle Scholar
  140. 140.
    Zhu W, Ooi VEC, Chan PKS et al (2003) Inhibitory effect of extracts of marine algae from Hong Kong against Herpes simplex viruses. In: Chapman ARO, Anderson RJ, Vreeland VJ, Davison IR (eds) Proceedings of the 17th international seaweed symposium. Oxford University Press, Oxford, pp 159–164Google Scholar
  141. 141.
    Fedorov SN, Ermakova SP, Zvyagintseva TN et al (2013) Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects. Mar Drugs 11:4876–4901PubMedPubMedCentralGoogle Scholar
  142. 142.
    Wang J, Zhang Q, Zhang Z et al (2008) Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int J Biol Macromol 42:127–132PubMedGoogle Scholar
  143. 143.
    Vishchuk OS, Ermakova SP, Zvyagintseva TN (2011) Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida: isolation, structural characteristics, and antitumor activity. Carbohydr Res 346:2769–2776PubMedGoogle Scholar
  144. 144.
    Li F, Tian TC, Shi YC et al (1995) Study on antivirus effect of fucoidan in vitro. J N Bethune Univ Med Sci 21:255–257Google Scholar
  145. 145.
    Li DY, Xu RY, Zhou WZ et al (2002) Effects of fucoidan extracted from brown seaweed on lipid peroxidation in mice. Acta Nutrim Sin 24:389–392Google Scholar
  146. 146.
    Wang WT, Zhou JH, Xing ST et al (1994) Immunomodulating action of marine algae sulfated polysaccharides on normal and immunosuppressed mice. Chin J Pharm Toxicol 8:199–202Google Scholar
  147. 147.
    Luo D, Zhan Q, Wang H et al (2009) Fucoidan protects against dopaminergic neuron death in vivo and in vitro. Eur J Pharmacol 617:33–40PubMedGoogle Scholar
  148. 148.
    Thompson KD, Dragar C (2004) Antiviral activity of Undaria pinnatifida against herpes simplex virus. Phytother Res 18:551–555PubMedGoogle Scholar
  149. 149.
    Hemmingson JA, Falshaw R, Furneaux RH et al (2006) Structure and antiviral activity of the galactofucan sulfates extracted from Undaria pinnatifida (Phaeophyta). J Appl Phycol 18(2):185–193Google Scholar
  150. 150.
    Maruyama H, Tamauchi H, Hashimoto M et al (2003) Antitumor activity and immune response of Mekabu fucoidan extracted from Sporophyll of Undaria pinnatifida. Vivo 17:245–249Google Scholar
  151. 151.
    Cho YS, Jung WK, Kim JA et al (2009) Beneficial effects of fucoidan on osteoblastic MG-63 cell differentiation. Food Chem 116:990–994Google Scholar
  152. 152.
    Cho ML, Lee BY, You SG (2011) Relationship between oversulfation and conformation of low and high molecular weight fucoidans and evaluation of their in vitro anticancer activity. Molecules 16:291–297Google Scholar
  153. 153.
    Cho ML, Lee HS, Kang IJ et al (2011) Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed. Food Chem 127:999–1006PubMedGoogle Scholar
  154. 154.
    Maruyamaa H, Tamauchi H, Hashimoto M et al (2005) Suppression of Th2 immune responses by Mekabu fucoidan from Undaria pinnatifida sporophylls. Int Arch Allergy Immunol 137:289–294Google Scholar
  155. 155.
    Ahmadi A, Moghadamtousi SZ, Abubakar S et al (2015) Antiviral potential of algae polysaccharides isolated from marine sources: a review. BioMed Res Int 2015:825203PubMedPubMedCentralGoogle Scholar
  156. 156.
    Gerber P, Dutcher JD, Adams EV et al (1958) Protective effect of seaweed extracts for chicken embryos infected with influenza virus B or mumps virus. Proc Soc Exp Biol Med 99(3):590–593PubMedGoogle Scholar
  157. 157.
    Damonte EB, Matulewicz MC, Cerezo AS (2004) Sulfated seaweed polysaccharides as antiviral agents. Curr Med Chem 11:2399–2419PubMedGoogle Scholar
  158. 158.
    Schaeffer DJ, Krylov VS (2000) Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol Environ Saf 45:208–227PubMedGoogle Scholar
  159. 159.
    Witvrouw M, De Clercq E (1997) Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol 29(4):497–511PubMedGoogle Scholar
  160. 160.
    Baba M, Snoeck R, Pauwels R et al (1988) Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother 32:1742–1745PubMedPubMedCentralGoogle Scholar
  161. 161.
    Adhikari U, Mateu CG, Chattopadhyay K et al (2006) Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum. Phytochemistry 67:2474–2482PubMedGoogle Scholar
  162. 162.
    Buck CB, Thompson CD, Roberts JN et al (2006) Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog 2(7):e69PubMedPubMedCentralGoogle Scholar
  163. 163.
    Grassauer A, Weinmuellner R, Meier C et al (2008) Iota-Carrageenan is a potent inhibitor of rhinovirus infection. Virol J 5:107PubMedPubMedCentralGoogle Scholar
  164. 164.
    Gonzalez ME, Alarcon B, Carrasco L (1987) Polysaccharides as antiviral agents: antiviral activity of carrageenan. Antimicrob Agents Chemother 31(9):1388–1393PubMedPubMedCentralGoogle Scholar
  165. 165.
    Zeitlin L, Whaley KJ, Hegarty TA et al (1997) Tests of vaginal microbicides in the mouse genital herpes model. Contraception 56(5):329–335PubMedGoogle Scholar
  166. 166.
    Carlucci MJ, Scolaro LA, Damonte EB (2002) Herpes simplex virus type 1 variants arising after selection with an antiviral carrageenan: lack of correlation between drug susceptibility and syn phenotype. J Med Virol 68(1):92–98PubMedGoogle Scholar
  167. 167.
    Carlucci MJ, Pujol CA, Ciancia M et al (1997) Antiherpetic and anticoagulant properties of carrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives: correlation between structure and biological activity. Int J Biol Macromol 20(2):97–105PubMedGoogle Scholar
  168. 168.
    Carlucci MJ, Scolaro LA, Noseda MD et al (2004) Protective effect of a natural carrageenan on genital herpes simplex virus infection in mice. Antiviral Res 64(2):137–141PubMedGoogle Scholar
  169. 169.
    Neushul M (1990) Antiviral carbohydrates from marine red algae. Hydrobiologia 204(1):99–104Google Scholar
  170. 170.
    De SF-Tischer PC, Talarico LB, Noseda M et al (2006) Chemical structure and antiviral activity of carrageenans from Meristiella gelidium against herpes simplex and dengue virus. Carbohydr Polym 63(4):459–465Google Scholar
  171. 171.
    Zacharopoulos VR, Phillips DM (1997) Vaginal formulations of carrageenan protect mice from herpes simplex virus infection. Clin Diagn Lab Immunol 4(4):465–468PubMedPubMedCentralGoogle Scholar
  172. 172.
    Bouhlal R, Haslin C, Chermann JC et al (2011) Antiviral activities of sulfated polysaccharides isolated from Sphaerococcus coronopifolius (Rhodophytha, Gigartinales) and Boergeseniella thuyoides (Rhodophyta, Ceramiales). Mar Drugs 9(7):1187–1209PubMedPubMedCentralGoogle Scholar
  173. 173.
    Hidari KI, Takahashi N, Arihara M et al (2008) Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga. Biochem Biophys Res Commun 376(1):91–95PubMedGoogle Scholar
  174. 174.
    Harden EA, Falshaw R, Carnachan SM et al (2009) Virucidal activity of polysaccharide extracts from four algal species against herpes simplex virus. Antiviral Res 83(3):282–289PubMedPubMedCentralGoogle Scholar
  175. 175.
    Hayashi K, Nakano T, Hashimoto M et al (2008) Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. Int Immunopharmacol 8(1):109–116PubMedGoogle Scholar
  176. 176.
    Mandal P, Mateu CG, Chattopadhyay K et al (2007) Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica. Antivir Chem Chemother 18(3):153–162PubMedGoogle Scholar
  177. 177.
    Ponce NMA, Pujol CA, Damonte EB et al (2003) Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydr Res 338(2):153–165PubMedGoogle Scholar
  178. 178.
    Ivanova V, Rouseva R, Kolarova M et al (1994) Isolation of a polysaccharide with antiviral effect from Ulva lactuca. Prep Biochem 24(2):83–97PubMedGoogle Scholar
  179. 179.
    Cassolato JEF, Noseda MD, Pujol CA et al (2008) Chemical structure and antiviral activity of the sulfated heterorhamnan isolated from the green seaweed Gayralia oxysperma. Carbohydr Res 343:3085–3095PubMedGoogle Scholar
  180. 180.
    Li LY, Li LQ, Guo CH (2010) Evaluation of in vitro antioxidant and antibacterial activities of Laminaria japonica polysaccharides. J Med Plants Res 4:2194–2198Google Scholar
  181. 181.
    Chen D, Wu XZ, Wen ZY (2008) Sulfated polysaccharides and immune response: promoter or inhibitor? Panminerva Med 50:177–183PubMedGoogle Scholar
  182. 182.
    Abad MJ, Bedoya LM, Bermejo P (2008) Natural marine anti-inflammatory products. Mini Rev Med Chem 8(8):740–754PubMedGoogle Scholar
  183. 183.
    Granert C, Raud J, Xie X et al (1994) Inhibition of leukocyte rolling with polysaccharide fucoidin prevents pleocytosis in experimental meningitis in the rabbit. J Clin Invest 93:929–936PubMedPubMedCentralGoogle Scholar
  184. 184.
    Li C, Gao Y, Xing Y et al (2011) Fucoidan, a sulfated polysaccharide from brown algae, against myocardial ischemia–reperfusion injury in rats via regulating the inflammation response. Food Chem Toxicol 49:2090–2095PubMedGoogle Scholar
  185. 185.
    Li Y, Qian ZJ, Kim MM et al (2011) Cytotoxic activities of phlorethol and fucophlorethol derivatives isolated from Laminariaceae Ecklonia cava. J Food Biochem 35:357–369Google Scholar
  186. 186.
    Senni K, Gueniche F, Bertaud AF et al (2006) Fucoidan a sulfated polysaccharide from brown algae is a potent modulator of connective tissue proteolysis. Arch Biochem Biophys 445:56–64PubMedGoogle Scholar
  187. 187.
    Ogata M, Matsui T, Kita T et al (1999) Carrageenan primes leukocytes to enhance lipopolysaccharide-induced tumor necrosis factor alpha production. Infect Immun 67(7):3284–3289PubMedPubMedCentralGoogle Scholar
  188. 188.
    Jung WK, Je JY, Kim SK (2001) A novel anticoagulant protein from Scapharca broughtonii. J Biochem Mol Biol 35(2):199–205Google Scholar
  189. 189.
    Kim SK, Wijesekara I (2010) Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods 2(1):1–9Google Scholar
  190. 190.
    Pereira MS, Melo FR, Mourao PAS (2002) Is there a correlation between structure and anticoagulant action of sulfated galactans and sulfated fucans? Glycobiology 12:573–580PubMedGoogle Scholar
  191. 191.
    Church FC, Meade JB, Treanor ER et al (1989) Antithrombin activity of fucoidan. The interaction of fucoidan with heparin cofactor II, antithrombin III, and thrombin. J Biol Chem 264:3618–3623PubMedGoogle Scholar
  192. 192.
    Li H, Mao W, Hou Y et al (2012) Preparation, structure and anticoagulant activity of a low molecular weight fraction produced by mild acid hydrolysis of sulfated rhamnan from Monostroma latissimum. Bioresour Technol 114:414–418PubMedGoogle Scholar
  193. 193.
    Mao W, Zang X, Li Y et al (2006) Sulfated polysaccharides from marine green algae Ulva conglobata and their anticoagulant activity. J Appl Phycol 18:9–14Google Scholar
  194. 194.
    Maeda M, Uehara T, Harada N et al (1991) Heparinoid-active sulfated polysaccharide from Monostroma nitidum and their distribution in the chlorophya. Phytochemistry 30(11):3611–3614Google Scholar
  195. 195.
    Palanisamy S, Vinosha M, Marudhupandi T, Rajasekar P, Prabhu NM (2017) Isolation of fucoidan from Sargassum polycystum brown algae: structural characterization, in vitro antioxidant and anticancer activity. Int J Biol Macromol 102:405–412PubMedGoogle Scholar
  196. 196.
    Delgado-Vargas F, Jimenez AR, Paredes-Lopez O (2000) Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr 40(3):173–289PubMedGoogle Scholar
  197. 197.
    Fabrowska J, Łeska B, Schroeder G et al (2015) Biomass and extracts of algae as material for cosmetics. In: Kim SK, Chojnacka K (eds) Marine algae extracts: processes, products, and applications. Wiley, Weinheim, pp 681–706Google Scholar
  198. 198.
    Larkum AW, Kuhl M (2005) Chlorophyll d: the puzzle resolved. Trends Plant Sci 10(8):355–357PubMedGoogle Scholar
  199. 199.
    Christaki E, Bonos E, Giannenas I et al (2013) Functional properties of carotenoids originating from algae. J Sci Food Agric 93:5–11PubMedGoogle Scholar
  200. 200.
    Zhang H, Huang D, Cramer WA (1999) Stoichiometrically bound β-carotene in the cytochrome b6f complexof oxygenic photosynthesis protects against oxygen damage. J Biol Chem 274(3):1581–1587PubMedGoogle Scholar
  201. 201.
    Dellapenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738PubMedGoogle Scholar
  202. 202.
    Ribeiro BD, Barreto DW, Coelho MAZ (2011) Technological aspects of β-carotene production. Food Bioprocess Technol 4(5):693–701Google Scholar
  203. 203.
    Burtin P (2003) Nutritional value of seaweeds. Electron J Environ Agric Food Chem 2:498–503Google Scholar
  204. 204.
    Haugan JA, Liaaen-Jensen S (1994) Algal carotenoids 54. Carotenoids of brown algae (Phaeophyceae). Biochem Syst Ecol 22(1):31–41Google Scholar
  205. 205.
    Matsuno T (2001) Aquatic animal carotenoids. Fish Sci 67(5):771–783Google Scholar
  206. 206.
    Kalam S, Gul MZ, Singh R et al (2015) Free radicals: implications in etiology of chronic diseases and their amelioration through nutraceuticals. Pharmacologia 6:11–20Google Scholar
  207. 207.
    Durackova Z (2010) Some current insights into oxidative stress. Physiol Res 59:459–469PubMedGoogle Scholar
  208. 208.
    Pashkow FJ (2011) Oxidative stress and inflammation in heart disease: do antioxidants have a role in treatment and/or prevention? Int J Inflam.  https://doi.org/10.4061/2011/514623
  209. 209.
    Reuter S, Gupta SC, Chaturvedi MM et al (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616PubMedPubMedCentralGoogle Scholar
  210. 210.
    Cornish M, Garbary D (2010) Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25:155–171Google Scholar
  211. 211.
    Pangestuti R, Kim SK (2011) Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Food 3(4):255–266Google Scholar
  212. 212.
    Pangestuti R, Kim SK (2011) Neuroprotective effects of marine algae. Mar Drugs 9:803–818PubMedPubMedCentralGoogle Scholar
  213. 213.
    Endo Y, Usuki R, Kaneda T (1985) Antioxidant effects of chlorophyll and pheophytin on the autoxidation of oils in the dark. I. Comparison of the inhibitory effects. J Am Oil Chem Soc 62:1375–1378Google Scholar
  214. 214.
    Endo Y, Usuki R, Kaneda T (1985) Antioxidant effects of chlorophyll and pheophytin on the autoxidation of oils in the dark. II. The mechanism of antioxidative action of chlorophyll. J Am Oil Chem Soc 62:1387–1390Google Scholar
  215. 215.
    Le Tutour B, Brunel C, Quemeneur F (1996) Effet de synergie de la chlorophylle a sur les proprietes antioxydantes de la vitamine E. New J Chem 20:707Google Scholar
  216. 216.
    Cahyana AH, Shuto Y, Kinoshita Y (1992) Pyropheophytin A as an antioxidative substance from the marine alga, arame (Eisenia bicyclis). Biosci Biotechnol Biochem 56(10):1533–1535Google Scholar
  217. 217.
    Truscott TG (1990) The photophysics and photochemistry of the carotenoids. J Photochem Photobiol B Biol 6:359–371Google Scholar
  218. 218.
    Young AJ, Lowe GM (2001) Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 385:20–27PubMedGoogle Scholar
  219. 219.
    Yan X, Chuda Y, Suzuki M et al (1999) Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci Biotechnol Biochem 63:605–607PubMedGoogle Scholar
  220. 220.
    Sachindra N, Sato E, Maeda H et al (2007) Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem 55:8516–8522PubMedGoogle Scholar
  221. 221.
    Senthilkumar N, Suresh V, Thangam R et al (2013) Isolation and characterization of macromolecular protein r-phycoerythrin from Portieria hornemannii. Int J Biol Macromol 55:150–160PubMedGoogle Scholar
  222. 222.
    Yabuta Y, Fujimura H, Kwak CS et al (2010) Antioxidant activity of the phycoerythrobilin compound formed from a dried Korean purple laver (Porphyra sp.) during in vitro digestion. Food Sci Technol Res 16(4):347–352Google Scholar
  223. 223.
    Block M, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69PubMedGoogle Scholar
  224. 224.
    Okai Y, Hiqashi-Okai K (1997) Potent anti-inflammatory activity of pheophytin a derived from edible green alga, Enteromorpha prolifera (Sujiao-nori). Int J Immunopharmacol 19(6):355–358PubMedGoogle Scholar
  225. 225.
    Shiratori K, Ohgami K, Ilieva I et al (2005) Effects of fucoxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Exp Eye Res 81(4):422–428PubMedGoogle Scholar
  226. 226.
    Heo SJ, Yoon WJ, Kim KN et al (2010) Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide stimulated RAW 264.7 macrophages. Food Chem Toxicol 48(8–9):2045–2051PubMedGoogle Scholar
  227. 227.
    Kim KN, Heo SJ, Yoon WJ et al (2010) Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-KB and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages. Eur J Pharmacol 649(1–3):369–375PubMedGoogle Scholar
  228. 228.
    Ansari J, Siraj A, Inamdar N (2010) Pharmacotherapeutic approaches of Parkinson’s disease. Int J Pharmacol 6:584–590Google Scholar
  229. 229.
    Bjarkam CR, Sørensen JC, Sunde NA et al (2001) New strategies for the treatment of Parkinson’s disease hold considerable promise for the future management of neurodegenerative disorders. Biogerontology 2:193–207PubMedGoogle Scholar
  230. 230.
    Narang S, Gibson D, Wasan AD et al (2008) Efficacy of dronabinol as an adjuvant treatment for chronic pain patients on opioid therapy. J Pain 9:254–264PubMedGoogle Scholar
  231. 231.
    Pangestuti R, Kim SK (2010) Neuroprotective properties of chitosan and its derivatives. Mar Drugs 8:2117–2128PubMedPubMedCentralGoogle Scholar
  232. 232.
    Okuzumi J, Nishino H, Murakoshi M et al (1990) Inhibitory effects of fucoxanthin, a natural carotenoid, on N-myc expression and cell cycle progression in human malignant tumor cells. Cancer Lett 55:75–81PubMedGoogle Scholar
  233. 233.
    Ikeda K, Kitamura A, Machida H et al (2003) Effect of Undaria pinnatifida (Wakame) on the development of cerebrovascular diseases in stroke prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 30:44–48PubMedGoogle Scholar
  234. 234.
    Khodosevich K, Monyer H (2010) Signaling involved in neurite outgrowth of postnatally born subventricular zone neurons in vitro. BMC Neurosci 11:18PubMedPubMedCentralGoogle Scholar
  235. 235.
    Ina A, Hayashi K, Nozaki H et al (2007) Pheophytin a, a low molecular weight compound found in the marine brown alga Sargassum fulvellum, promotes the differentiation of PC12 cells. Int J Dev Neurosci 25:63–68PubMedGoogle Scholar
  236. 236.
    Ina A, Kamei Y (2006) Vitamin B 12, a chlorophyll-related analog to pheophytin a from marine brown algae, promotes neurite outgrowth and stimulates differentiation in PC12 cells. Cytotechnology 52:181–187PubMedPubMedCentralGoogle Scholar
  237. 237.
    Hotchkiss S, Murphy C (2015) Marine macroalgae and human health. In: Pereira L, Neto JM (eds) Marine algae—biodiversity, taxonomy, environmental, assessent and biotechnology. CRC Press, Boca RatonGoogle Scholar
  238. 238.
    Targett NM, Coen LD, Boettcher AA et al (1992) Biogeographic comparisons of marine algal polyphenolics: evidence against a latitudinal trend. Oecologia 89(4):464–470PubMedGoogle Scholar
  239. 239.
    Koivikko R, Loponen J, Honkanen T et al (2005) Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J Chem Ecol 31(1):195–212PubMedGoogle Scholar
  240. 240.
    Targett NM, Arnold TM (1998) Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J Phycol 34:195–205Google Scholar
  241. 241.
    Glombitza KW, Pauli K (2003) Fucols and phlorethols from the brown alga Scytothamnus australis Hook. et Harv. (Chnoosporaceae). Bot Mar 46(3):315–320Google Scholar
  242. 242.
    Heo SJ, Park PJ, Park EJ et al (2005) Antioxidant activity of enzymatic extracts from a brown seaweed Ecklonia cava by electron spin resonance spectrometry and comet assay. Eur Food Res Technol 221(1):41–47Google Scholar
  243. 243.
    Heo SJ, Park PJ, Park EJ et al (2005) Antioxidative effect of proteolytic hydrolysates from Ecklonia cava on radical scavenging using ESR and H2O2-induced DNA damage. Food Sci Biotechnol 14:614–620Google Scholar
  244. 244.
    Kang HS, Chung HY, Kim JY et al (2004) Inhibitory phlorotannins from the edible brown alga Ecklonia stolonifera on total reactive oxygen species (ROS) generation. Arch Pharm Res 27(2):194–198PubMedGoogle Scholar
  245. 245.
    Shibata T, Ishimaru K, Kawaguchi S et al (2008) Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. J Appl Phycol 20(5):705–711Google Scholar
  246. 246.
    Li YX, Kim SK (2011) Utilization of seaweed derived ingredients as potential antioxidants and functional ingredients in the food industry: an overview. Food Sci Biotechnol 20(6):1461–1466Google Scholar
  247. 247.
    Kim MM, Kim SK (2010) Effect of phloroglucinol on oxidative stress and inflammation. Food Chem Toxicol 48(10):2925–2933PubMedGoogle Scholar
  248. 248.
    Kang K, Park Y, Hwang HJ et al (2003) Antioxidative properties of brown algae polyphenolics and their perspectives as chemopreventive agents against vascular risk factors. Arch Pharm Res 26(4):286–293PubMedGoogle Scholar
  249. 249.
    Shibata T, Nagayama K, Sugiura S et al (2015) Analysis on composition and antioxidative properties of phlorotannins isolated from Japanese Eisenia and Ecklonia species. Am J Plant Sci 6:2510–2521Google Scholar
  250. 250.
    Kang KA, Lee KH, Chae S et al (2005) Eckol isolated from Ecklonia cava attenuates oxidative stress induced cell damage in lung fibroblast cells. FEBS Lett 579:6295–6304PubMedGoogle Scholar
  251. 251.
    Kang KA, Lee KH, Chae S et al (2006) Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation. J Cell Biochem 97:609–620PubMedGoogle Scholar
  252. 252.
    Ahn GN, Kim KN, Cha SH et al (2007) Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and H2O2-mediated DNA damage. Eur Food Res Technol 1:71–79Google Scholar
  253. 253.
    Kahl R, Kahl G (1983) Effect of dietary antioxidants on benzo(a)pyrene metabolism in rat liver microsomes. Toxicology 28(3):229–233PubMedGoogle Scholar
  254. 254.
    Sasaki M, Maki JI, Oshiman KI et al (2005) Biodegradation of bisphenol A by cells and cell lysate from Sphingomonas sp. strain AO1. Biodegradation 16(5):449–459PubMedGoogle Scholar
  255. 255.
    Choi JG, Kang OH, Brice OO et al (2010) Antibacterial activity of Ecklonia cava against methicillin-resistant Staphylococcus aureus and Salmonella spp. Foodborne Pathog Dis 7:435–441PubMedGoogle Scholar
  256. 256.
    Eom SH (2012) Anti-MRSA (methicillin-resistant Staphylococcus aureus) substance isolated from Eisenia bicyclis and its action mechanism. Dissertation, Pukyong National University, BusanGoogle Scholar
  257. 257.
    Lee D, Kang MS, Hwang HJ et al (2008) Synergistic effect between dieckol from Ecklonia stolonifera and b-lactams against methicillin-resistant Staphylococcus aureus. Biotechnol Bioprocess Eng 13:758–764Google Scholar
  258. 258.
    Nagayama K, Iwamura Y, Shibata T et al (2002) Bactericidal activity of phlorotannin from the brown alga Ecklonia kurome. J Antimicrob Chemother 50:889–893PubMedGoogle Scholar
  259. 259.
    Eom SH, Kang MS, Kim YM (2008) Antibacterial activity of the phaeophyta Ecklonia stolonifera on methicillin-resistant Staphylococcus aureus. J Fish Sci Technol 11:1–6Google Scholar
  260. 260.
    Braden KW, Blanton JR, Allen VG et al (2004) Ascophyllum nodosum supplementation: a preharvest intervention for reducing Escherichia coli O157:H7 and Salmonella spp. in feedlot steers. J Food Prot 67:1824–1828PubMedGoogle Scholar
  261. 261.
    Lee MH, Lee KB, Oh SM et al (2010) Antifungal activities of dieckol isolated from the marine brown alga Ecklonia cava against Trichophyton rubrum. Food Sci Biotechnol 53:504–507Google Scholar
  262. 262.
    Ahn CB, Jeon YJ, Kang DS et al (2004) Free radical scavenging activity of enzymatic extracts from a brown seaweed Scytosiphon lomentaria by electron spin resonance spectrometry. Food Res Int 37:253–258Google Scholar
  263. 263.
    Ahn MJ, Yoon KD, Min SY et al (2004) Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava. Biol Pharm Bull 27:544–547PubMedGoogle Scholar
  264. 264.
    Yuan YV, Walsh NA (2006) Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem Toxicol 44:1144–1150PubMedGoogle Scholar
  265. 265.
    Yang H, Zeng M, Dong S et al (2010) Anti-proliferative activity of phlorotannin extracts from brown algae Laminaria japonica Aresch. Chin J Oceanol Limnol 28:122–130Google Scholar
  266. 266.
    Cho EJ, Rhee SH, Park KY (1997) Antimutagenic and cancer cell growth inhibitory effects of seaweeds. J Food Sci Nutr 2:348–353Google Scholar
  267. 267.
    Lin C (2005) Study on the physiological activity from two kinds of brown polyphenols. Qingdao University of Chemical Technology, QingdaoGoogle Scholar
  268. 268.
    Montero L, Sánchez-Camargo AP, García-Cañas V, Tanniou A et al (2016) Anti-proliferative activity and chemical characterization by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry of phlorotannins from the brown macroalga Sargassum muticum collected on North-Atlantic coasts. J Chromatogr A 1428:115–125PubMedGoogle Scholar
  269. 269.
    Kong CS, Kim JA, Yoon NY (2009) Induction of apoptosis by phloroglucinol derivative from Ecklonia cava in MCF-7 human breast cancer cells. Food Chem Toxicol 47:1653–1658PubMedGoogle Scholar
  270. 270.
    Thomas NV, Kim SK (2011) Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environ Toxicol Pharmacol 32(3):325–335PubMedGoogle Scholar
  271. 271.
    Apostolidis E, Lee C (2010) In vitro potential of Ascophyllum nodosum phenolic antioxidant mediated α-glucosidase and α-amylase inhibition. J Food Sci 75:97–102Google Scholar
  272. 272.
    Zimmet P, Alberti K, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787PubMedGoogle Scholar
  273. 273.
    Lebovitz HE (1997) Alpha-glucosidase inhibitors. Endocrinol Metab Clin North Am 26:539–551PubMedGoogle Scholar
  274. 274.
    Iwai K (2008) Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-A(y) mice. Plant Foods Hum Nutr 63(4):163–169PubMedGoogle Scholar
  275. 275.
    Lee SH, Min KH, Han JS et al (2012) Effects of brown alga, Ecklonia cava on glucose and lipid metabolism in C57BL/KsJ-db/db mice, a model of type 2 diabetes mellitus. Food Chem Toxicol 50:575–582PubMedGoogle Scholar
  276. 276.
    Min KH, Kim HJ, Jeon YJ et al (2011) Ishige okamurae ameliorates hyperglycemia and insulin resistance in C57BL/KsJ-db/db mice. Diabetes Res Clin Pract 93:70–76PubMedGoogle Scholar
  277. 277.
    Heo SJ, Hwang JY, Choi JI et al (2009) Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur J Pharmacol 615:252–256PubMedGoogle Scholar
  278. 278.
    Church MK, Levi-Schaffer F (1997) The human mast cell. J Allergy Clin Immunol 99:155–160PubMedGoogle Scholar
  279. 279.
    Lagunoft D, Martin TW, Read G (1983) Agents that release histamine from mast cells. Annu Rev Pharmacol Toxicol 23:331–351Google Scholar
  280. 280.
    Borish L (2003) Allergic rhinitis: systematic inflammation and implications for management. J Allergy Clin Immunol 112(6):1021–1031.  https://doi.org/10.1016/j.jaci.2003.09.015 PubMedGoogle Scholar
  281. 281.
    Liu T, Bai ZT, Pang XY et al (2007) Degranulation of mast cells and histamine release involved in rat pain-related behaviors and edema induced by scorpion Buthus martensi Karch venom. Eur J Pharmacol 575(1–3):46–56PubMedGoogle Scholar
  282. 282.
    Lorentz A, Schwengberg S, Sellge G et al (2000) Human intestinal mast cells are capable of producing different cytokine profiles. Role of IgE receptor cross linking and IL-4. J Immunol 164(1):43–48PubMedGoogle Scholar
  283. 283.
    Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77(4):1033–1079PubMedGoogle Scholar
  284. 284.
    He D, Zhou A, Wei W et al (2001) A new study of the degradation of hyaluronic acid by hyaluronidase using quartz crystal impedance technique. Talanta 53(5):1021–1029PubMedGoogle Scholar
  285. 285.
    Kakegawa H, Matsumoto H, Satoh T (1988) Inhibitory effects of hydrangenol derivatives on the activation of hyaluronidase and their antiallergic activities. Planta Med 54(5):385–389PubMedGoogle Scholar
  286. 286.
    Samee H, Li ZX, Lin H et al (2009) Anti-allergic effects of ethanol extracts from brown seaweeds. J Zhejiang Univ Sci B 10(2):147–153PubMedPubMedCentralGoogle Scholar
  287. 287.
    Le QT, Li Y, Qian ZJ et al (2009) Inhibitory effects of polyphenols isolated from marine alga Ecklonia cava on histamine release. Process Biochem 44:168–176Google Scholar
  288. 288.
    Li Y, Lee SH, Le QT et al (2008) Anti-allergic effects of phlorotannins on histamine release via binding Inhibition between IgE and FceRI. J Agric Food Chem 56:12073–12080PubMedGoogle Scholar
  289. 289.
    Shim SY, Le QT, Lee SH et al (2009) Ecklonia cava extract suppresses the highaffinity IgE receptor, Fc_RI expression. Food Chem Toxicol 47:555–560PubMedGoogle Scholar
  290. 290.
    Sugiura Y, Matsuda K, Yamada Y et al (2006) Isolation of a new anti-allergic phlorotannin, phlorofucofuroeckol-B, from an edible brown alga, Eisenia arborea. Biosci Biotechnol Biochem 70(11):2807–2811PubMedGoogle Scholar
  291. 291.
    Fernando IS, Nah JW, Jeon YJ (2016) Potential anti-inflammatory natural products from marine algae. Environ Toxicol Pharmacol 48:22–30PubMedGoogle Scholar
  292. 292.
    Lee SH, Eom SH, Yoon NY, Kim MM, Li YX, Ha SK, Kim SK (2016) Fucofluoroeckol-A from Eisenia bicyclis inhibits inflammation in lipopolysaccharide-induced mouse macrophages via downregulation of the MAPK/NF-κB signaling pathway. J Chem 6509212:1–9Google Scholar
  293. 293.
    Fan X, Bai L, Zhu L et al (2014) Marine algae-derived bioactive peptides for human nutrition and health. J Agric Food Chem 62:9211–9222PubMedGoogle Scholar
  294. 294.
    FitzGerald JR, Murray AB (2007) Bioactive peptides and lactic fermentations. Int J Diary Technol 59:118–125Google Scholar
  295. 295.
    Kim JA, Kim SK (2013) Bioactive peptides from marine sources as potential anti-inflammatory therapeutics. Curr Protein Pept Sci 14(3):177–182PubMedGoogle Scholar
  296. 296.
    Mabeau S, Fleurence J (1993) Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci Technol 4:103–107Google Scholar
  297. 297.
    Ramos MV, Monteiro ACO, Moreira RA et al (2000) Amino acid composition of some Brazilian seaweed species. J Food Biochem 24:33–39Google Scholar
  298. 298.
    Dawczynski C, Schafer U, Leiterer M et al (2007) Nutritional and toxicological importance of macro, trace, and ultra-trace elements in algae food products. J Agric Food Chem 55(25):10470–10475PubMedGoogle Scholar
  299. 299.
    Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16:945–960Google Scholar
  300. 300.
    Lima RN, Porto ALM (2016) Recent advances in marine enzymes for biotechnological process. In: Toldra F, Kim SK (eds) Advances in food and nutrition research, vol 78. Academic, Cambridge, pp 153–192Google Scholar
  301. 301.
    Ryhänen EL, Pihlanto-Lepp ALA, Pahkala E (2001) A new type of ripened, low-fat cheese with bioactive properties. Int Dairy J 11:441–447Google Scholar
  302. 302.
    Suetsuna K, Maekawa K, Chen JR (2004) Antihypertensive effects of Undaria pinnatif ida (wakame) peptide on blood pressure in spontaneously hypertensive rats. J Nutr Biochem 15:267–272PubMedGoogle Scholar
  303. 303.
    Tsuruki T, Kishi K, Takahashi M et al (2003) Soymetide, an immunostimulating peptide derived from soybean β -conglycinin, is an fMLP agonist. FEBS Lett 540(1–3):206–210PubMedGoogle Scholar
  304. 304.
    Ngo DH, Wijesekara I, Vo TS et al (2011) Marine food-derived functional ingredients as potential antioxidants in the food industry: an overview. Food Res Int 44:523–529Google Scholar
  305. 305.
    Heo SJ, Jeon YJ, Lee J et al (2003) Antioxidant effect of enzymatic hydrolyzate from a kelp, Ecklonia cava. Algae 18:341–347Google Scholar
  306. 306.
    Heo SJ, Lee KW, Song CB et al (2003) Antioxidant activity of enzymatic extracts from brown seaweeds. Algae 18(1):71–81Google Scholar
  307. 307.
    Heo SJ, Jeon YJ (2008) Radical scavenging capacity and cytoprotective effect of enzymatic digests of Ishige okumurae. J Appl Phycol 20:1087–1095Google Scholar
  308. 308.
    Fleurence J (2004) Seaweed proteins. In: Yada RY (ed) Proteins in food processing. Woodhead, Cambridge, pp 197–213Google Scholar
  309. 309.
    Kearney PM, Whelton M, Reynolds K et al (2005) Global burden of hypertension: analysis of worldwide data. Lancet 365:217–223PubMedGoogle Scholar
  310. 310.
    Verdecchia P, Angeli F, Mazzotta G et al (2008) The rennin angiotensin system in the development of cardiovascular disease: role of aliskiren in risk reduction. Vasc Health Risk Manag 4:971–981PubMedPubMedCentralGoogle Scholar
  311. 311.
    Wilson J, Hayes M, Carney B (2011) Angiotensin-1-converting enzyme and prolyl endopeptidase inhibitory peptides from natural sources with a foucs on marine processing by-products. Food Chem 129:235–244Google Scholar
  312. 312.
    Athukorala Y, Jeon YJ (2005) Screening for angiotensin-1-converting enzyme inhibitory activity of Ecklonia cava. J Food Sci Nutr 10:134–139Google Scholar
  313. 313.
    Cha SH, Ahn GN, Heo SJ et al (2006) Screening of extracts from marine green and brown algae in Jeju for potential marine angiotensin-I converting enzyme (ACE) inhibitory activity. J Korean Soc Food Sci Nutr 35:307–314Google Scholar
  314. 314.
    Qu W, Ma H, Pan Z et al (2010) Preparation of antihypertensive activity of peptides from Porphyra yezoensis. Food Chem 123:14–20Google Scholar
  315. 315.
    Suetsuna K (1998) Purification and identification of angiotensin I-converting enzyme inhibitors from the red alga Porphyra yezoensis. J Mar Biotechnol 6:163–167PubMedGoogle Scholar
  316. 316.
    Pangestuti R, Kim SK (2017) Bioactive peptide of marine origin for the prevention and treatment of non-communicable diseases. Mar Drugs 15:1–23Google Scholar
  317. 317.
    Samarakoon K, Jeon YJ (2012) Bio-functionalities of proteins derived from marine algae—a review. Food Res Int 48:948–960Google Scholar
  318. 318.
    Ahn G, Hwang I, Park EJ et al (2008) Immunomodulatory effects of an enzymatic extracts from Ecklonia cava on murine splenocytes. Mar Biotechnol 10:278–289PubMedGoogle Scholar
  319. 319.
    Cian RE, Martínez-Augustin O, Drago SR (2012) Bioactive properties of peptides obtained by enzymatic hydrolysis from protein by products of Porphyra columbina. Food Res Int 49:364–372Google Scholar
  320. 320.
    Nisizawa K (2002) Seaweed Kaiso, Bountiful harvest from the seas. Sustenance for health and well-being by preventing common life-style related diseases. Japan Seaweed Association, Kochi, p 106Google Scholar
  321. 321.
    Hernandez BY, Mcduffie K, Wilkens LR et al (2003) Diet and premalignant lesions of the cervix: evidence of a protective role for folate, riboflavin, thiamin, and vitamin B12. Cancer Causes Control 14(9):859–870PubMedGoogle Scholar
  322. 322.
    Kolb N, Vallorani L, Milanovic N et al (2004) Evaluation of marine algae Wakame (Undaria pinnatifida) and Kombu (Laminaria digitata japonica) as food supplements. Food Technol Biotechnol 42:57–61Google Scholar
  323. 323.
    Hernández-Carmona G, Carrillo-Domínguez S, Arvizu-Higuera DL et al (2009) Monthly variation in the chemical composition of Eisenia arborea J.E. Areschoug. J Appl Phycol 21(5):607–616Google Scholar
  324. 324.
    Ratana-Arporn P, Chirapart A (2006) Nutritional evaluation of tropical green seaweeds Caulerpa lentillifera and Ulva reticulata. Kasetsart J Nat Sci 40:75–83Google Scholar
  325. 325.
    De Roeck-Holtzhauer Y, Quere I, Claire C (1991) Vitamin analysis of five planktonic microalgae and one macroalga. J Appl Phycol 3:259–264Google Scholar
  326. 326.
    Skrovankova S (2011) Seaweed vitamins as nutraceuticals. In: Kim SK (ed) Marine medicinal foods; advances in food and nutrition research, vol 64. Elsevier, Boston, pp 358–366Google Scholar
  327. 327.
    McDermid KJ, Stuercke B (2003) Nutritional composition of edible Hawaiian seaweeds. J Appl Phycol 15:513–524Google Scholar
  328. 328.
    Cardozo KH, Guaratini T, Barros MP et al (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C Toxicol Pharmacol 146(1-2):60–67PubMedGoogle Scholar
  329. 329.
    Plaza M, Cifuentes A, Ibanez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Technol 19(1):31–39Google Scholar
  330. 330.
    Solibami VJ, Kamat SY (1985) Distribution of tocopheral (vitamin E) in marine algae from Goa, West Coast of India. Indian J Mar Sci 41:228–229Google Scholar
  331. 331.
    Sanchez-Machado DI, Lopez-Hernandez J, Paseiro-Losada P (2002) High-performance liquid chromatographic determination of alpha-tocopherol in macroalgae. J Chromatogr A 976(1-2):277–284PubMedGoogle Scholar
  332. 332.
    Smith AG, Croft MT, Moulin M et al (2007) Plants need their vitamins too. Curr Opin Plant Biol 10(3):266–275PubMedGoogle Scholar
  333. 333.
    Norris ER, Simeon MK, Williams HB (1936) The vitamin B and vitamin C content of marine algae. J Nutr 13(4):425–433Google Scholar
  334. 334.
    Ortiz J, Romero N, Robert P et al (2006) Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea Antarctica. Food Chem 99:98–104Google Scholar
  335. 335.
    Le Tutour B (1990) Antioxidative activities of algal extracts, synergistic effect with vitamin E. Phytochemistry 29(12):3759–3765Google Scholar
  336. 336.
    Hamza I, Gitli JG (2002) Copper chaperones for cytochrome c oxidase and human disease. J Bioenerg Biomembr 34(5):381–388PubMedGoogle Scholar
  337. 337.
    Leary SC, Cobine PA, Kaufman BA et al (2007) The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis. Cell Metab 5(1):9–20PubMedGoogle Scholar
  338. 338.
    McCall KA, Huang C, Fierke CA (2000) Function and mechanism of zinc metalloenzymes. J Nutr 130:1437S–1446SPubMedGoogle Scholar
  339. 339.
    Parisi AF, Vallee BL (1969) Zinc metalloenzymes: characteristics and significance in biology and medicine. Am J Clin Nutr 22:1222–1239PubMedGoogle Scholar
  340. 340.
    Tanaka T, Kurabayashi M, Aihara Y et al (2000) Inducible expression of manganese superoxide dismutase by phorbol 12-myristate 13-acetate is mediated by Sp1 in endothelial cells. Arterioscler Thromb Vasc Biol 20:392–401PubMedGoogle Scholar
  341. 341.
    Yoshioka Y, Satoh H, Mitani M (2007) Theoretical study on electronic structures of FeOO, FeOOH, FeO(H2O), and FeO in hemes: as intermediate models of dioxygen reduction in cytochrome c oxidace. J Inorg Biochem 101(10):1410–1427PubMedGoogle Scholar
  342. 342.
    Arasaki S, Arasaki T (1983) Vegetables from the sea. Japan Publications, TokyoGoogle Scholar
  343. 343.
    Saenko GN, Kravtsova YY, Ivanenko VV et al (1978) Concentration of iodine and bromine by plants in the seas of Japan and Okhotsk. Mar Biol 47:243–250Google Scholar
  344. 344.
    Lotze E, Hoffman E (2017) Nutrient composition and content of various biological active compounds of three South African-based commercial seaweed biostimulants. J Appl Phycol 28(2):1379–1386Google Scholar
  345. 345.
    Misurcova L, Machu L, Orsavova J (2011) Seaweed minerals as nutraceuticals. In: Kim SK (ed) Marine medicinal foods—implications and applications, macro and microalgae; Advances in food and nutrition research, vol 64. Academic, Cambridge, pp 371–390Google Scholar
  346. 346.
    Kupper FC, Schweigert N, Gall EA et al (1998) Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodine. Planta 207:163–171Google Scholar
  347. 347.
    Teas J, Pino S, Critchley A et al (2004) Variability of iodine content in common commercially available edible seaweeds. Thyroid 14:836–841PubMedGoogle Scholar
  348. 348.
    Villares R, Puente X, Carballeira A (2002) Seasonal variation and background levels of heavy metals in two green seaweeds. Environ Pollut 119:79–90Google Scholar
  349. 349.
    Hashim MA, Chu KH (2004) Biosorption of cadmium by brown, green, and red seaweeds. Chem Eng J 97(2–3):249–255Google Scholar
  350. 350.
    Antunes WM, Luna AS, Henriques CA et al (2003) An evaluation of biosorption by a brown seaweed under optimized conditions. Electron J Biotechnol 6(3):174–184Google Scholar
  351. 351.
    Ghimire KN, Inoue K, Ohto K et al (2008) Adsorption study of metal ions onto crosslinked seaweed Laminaria japonica. Bioresour Technol 99(1):32–37PubMedGoogle Scholar
  352. 352.
    Hu S, Tang CH, Wu ML (1996) Cadmium accumulation by several seaweeds. Sci Total Environ 187(2):65–71Google Scholar
  353. 353.
    Riget F, Johansen P, Asmud G (1995) Natural seasonal variation of cadmium, lead and zinc in brown seaweed (Fucus vesiculosus). Mar Pollut Bull 30:409–413Google Scholar
  354. 354.
    Tsui MT, Cheung KC, Tam NF et al (2006) A comparative study on metal sorption by brown seaweed. Chemosphere 65(1):51–57PubMedGoogle Scholar
  355. 355.
    Williams CJ, Edyvean RGJ (1997) Ion exchange in nickel biosorption by seaweed materials. Biotechnol Prog 13:424–428Google Scholar
  356. 356.
    Hou X, Yan X (1998) Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae. Sci Total Environ 222(3):141–156Google Scholar
  357. 357.
    Vasconcelos MTSD, Leal MFC (2001) Seasonal variability in the kinetics of Cu, Pb, Cd and Hg accumulation by macroalgae. Mar Chem 74:65–85Google Scholar
  358. 358.
    Fenech M, Ferguson LR (2001) Vitamins/minerals and genomic stability in humans. Mutat Res 475:1–6PubMedGoogle Scholar
  359. 359.
    Kersting M, Alexy U, Sichert-Hellert W (2001) Dietary intake and food sources of minerals in 1 to 18 year old German children and adolescents. Nutr Res 21:607–616Google Scholar
  360. 360.
    Goldhaber SB (2003) Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol 38:232–242PubMedGoogle Scholar
  361. 361.
    MacArtain P, Gill CL, Brooks M et al (2007) Nutritional value of edible seaweeds. Nutr Rev 65:535–543PubMedGoogle Scholar
  362. 362.
    Miyake Y, Sasaki S, Ohya Y et al (2006) Dietary intake of seaweed and minerals and prevalence of allergic rhinitis in Japanese pregnant females: baseline data from the Osaka Maternal and Child Health Study. Ann Epidemiol 16(8):614–621PubMedGoogle Scholar
  363. 363.
    Velisek J (2002) Food chemistry, vol 2. OSSIS, TaborGoogle Scholar
  364. 364.
    Santoso J, Gunji S, Yosire-Stark Y et al (2006) Mineral contents of Indonesian seaweeds and mineral solubility affected by basic cooking. Food Sci Technol Res 12:59–66Google Scholar
  365. 365.
    Misurcova L, Stratilova I, Kracmar S (2009) Content of minerals in selected products from freshwater algae and seaweed (in Czech). Chem Listy 103:1027–1033Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Evi Amelia Siahaan
    • 1
  • Ratih Pangestuti
    • 2
  • Se-Kwon Kim
    • 3
  1. 1.Research and Development Division of Marine Bio-IndustryIndonesian Institute of Sciences (LIPI)North Lombok-NTBRepublic of Indonesia
  2. 2.Research Center for Oceanography, Indonesian Institute of Sciences (LIPI)Ancol-JakartaRepublic of Indonesia
  3. 3.Department of Marine-Bio Convergence ScienceSpecialized Graduate School Science and Technology Convergence, Pukyong National UniversityBusanRepublic of Korea

Personalised recommendations