Advertisement

Paleosols and Past Climate Change

  • Martin Kehl
  • Farhad Khormali
Chapter
Part of the World Soils Book Series book series (WSBS)

Abstract

Paleosols in Iran have received less attention than modern soils, although Quaternary deposits and exposures therein are widespread. The chapter gives a short introduction into the general nature of buried and relict paleosols and on methodological aspects how to recognize, characterize and date paleosols. Examples are given for Pre-quaternary and Quaternary paleosols in Iran. The focus is on paleosols in loess-soil sequences in Northern Iran, which have been studied in more detail. These loess exposures contain paleosols of various development degrees separated by layers of more or less unweathered sediment. Strongly developed argillic horizons of paleo-Luvisols occur as well as very weakly developed brown horizons reflecting syngenetic soil formation. The loess-paleosol sequences are excellent geological archives of climate change, where paleosols mark periods of increased humidity and layers of unweathered loess dry phases. The paleosols most probably correlate with interglacial and interstadial periods of the last glacial cycles suggesting that climate change in Northern Iran was in phase with well-known cycles recorded in the temperate zone of the northern hemisphere. The high potential of paleosols as stratigraphic markers and geological archives of climate change and landscape evolution in Iran is still widely unchallenged.

Keywords

Nature of paleosols Quaternary Loess Pedostratigraphy Climate archive 

References

  1. Aharipour R, Moussavi MR, Mosaddegh H, Mistiaen B (2010) Facies features and paleoenvironmental reconstruction of the Early to Middle Devonian syn-rift volcano-sedimentary succession (Padeha Formation) in the Eastern-Alborz Mountains, NE Iran. Facies 56:279–294CrossRefGoogle Scholar
  2. Antoine P, Bahain J-J, Berillon G, Asgari-Khaneghan A (2006) Tufcalcaire et séquense alluviale en context etectoniqueactif: la formation de Baliran (Province du Mazadaran, Iran). Quaternaire 17(4):321–331Google Scholar
  3. Ayoobi S, Jalalian A, Eghbal MK (2003) Evidences of climate change recorded in Quaternary paleosols from Isfahan and Emam-Gheis (Chaharmahal and Bakhtiary). J Sci Technol Agric Natur Resour 7 (in Persian)Google Scholar
  4. Ballato P, Mulch A, Landgraf A, Strecker MR, Dalconi MC, Friedrich A, Tabatabaei SH (2010) Middle to late Miocene Middle Eastern climate from stable oxygen and carbon isotope data, southern Alborz mountains, N Iran. Earth Planet Sci Lett 300:125–138CrossRefGoogle Scholar
  5. Bobek H (1937) Die Rolle der Eiszeit in Nordwestiran. Z Gletscherk 25:130–183Google Scholar
  6. Bronger A (2003) Löss als Produkt der Verwitterung und Bodenbildung. Mitteilgn Dtsch Bodenkundl Gesellsch 102:437–438Google Scholar
  7. Bronger A, Bruhn-Lobin N, Heinkele T (1994) Micromorphology of paleosols-genetic and paleoenvironmental deductions: Case studies from central China, south India, NW Morocco and the Great Plains of the USA. Dev Soil Sci 22:187–206Google Scholar
  8. Catt JA (1990) Paleopedology manual. Quat Int 6:1–95CrossRefGoogle Scholar
  9. Catt JA (1998) Report of the Working Group on definitions used in paleopedology. Quat Int 51(52):84CrossRefGoogle Scholar
  10. Dodonov AE (1991) Loess of Central Asia. GeoJournal 24:185–194Google Scholar
  11. Driese SG (2009) Paleosols, Pre-Quaternary. In: Encyclopedia of paleoclimatology and ancient environments, Springer, Netherlands, p 748–751.  10.1007/978-1-4020-4411-3_178
  12. Ehlers E (1971) Südkaspisches Tiefland Nordiran und Kaspisches Meer. Beiträge zu ihrer Entwicklungsgeschichte im Jung- und Postpleistozän. Tübinger GeogrStud 44, TübingenGoogle Scholar
  13. Farpoor MH, Khademi H, Eghbal MK, Krouse RH (2004) Mode of gypsum deposition in southeastern Iranian soils as revealed by isotopic composition of crystallization water. Geoderma 121:233–242CrossRefGoogle Scholar
  14. Fink J, Kukla GJ (1977) Pleistocene climates in Central Europe: At least 17 interglacials after the Olduvai event. Quat Res 7:363–371CrossRefGoogle Scholar
  15. Forte AM, Cowgill E (2013) Late Cenozoic base-level variations of the Caspian Sea: A review of its history and proposed driving mechanisms. Palaeogeogr Palaeoclimatol Palaeoecol 386:392–407CrossRefGoogle Scholar
  16. Frechen M, Kehl M, Rolf C, Sarvati R, Skowronek A (2009) Loess chronology of the Caspian Lowland in Northern Iran. Quat Int 128:220–233Google Scholar
  17. Gardner R, Rendell H (1994) Loess, climate and orogenesis: implications of South Asian loesses. Z Geomorph NF 38:169–184Google Scholar
  18. Ghafarpour A, Khormali F, Balsam W, Karimi A, Ayoubi S (2016) Climatic interpretation of loess-paleosol sequences at Mobarakabad and Aghband, Northern Iran. Quat Res 86:95–109Google Scholar
  19. Karimi A, Khademi H, Kehl M, Jalalian A (2009) Distribution, lithology and provenance of peridesert loess deposits in northeastern Iran. Geoderma 148:241–250CrossRefGoogle Scholar
  20. Karimi A, Frechen M, Kehl M, Khademi H (2011) Chronostratigraphy of loess deposits in Northeast Iran. Quat Int 234:124–132CrossRefGoogle Scholar
  21. Karimi A, Khademi H, Ayoubi S (2013) Magnetic susceptibility and morphological characteristics of a loess–paleosol sequence in northeastern Iran. Catena 101:56–60CrossRefGoogle Scholar
  22. Kehl M (2009) Quaternary climate change in Iran - the state of knowledge. Erdkunde 63:1–17CrossRefGoogle Scholar
  23. Kehl M (2010) Quaternary loesses, loess-like sediments, soils and climate change in Iran. Relief, Boden, Paläoklima, 24, Schweizerbart, StuttgartGoogle Scholar
  24. Kehl M, Frechen M, Skowronek A (2009) Nature and age of Late Quaternary basin fill deposits in the Basin of Persepolis, Southern Iran. Quat Int 196:57–70Google Scholar
  25. Kehl M, Khormali F (2014) Excursion guide. Int Symp Loess, Soils and Climate Change in Southern Eurasia, Gorgan Univ of Agricultural Sciences and Natural ResourcesGoogle Scholar
  26. Kehl M, Sarvati R, Ahmadi H, Frechen M, Skowronek A (2005) Loess paleosol-sequences along a climatic gradient in Northern Iran. Eiszeitalter u Gegenwart 55:149–173Google Scholar
  27. Khademi H, Mermut AR (1999) Submicroscopy and stable isotope geochemistry of carbonates ad associated palygorskite in Iranian Aridisols. Eur J Soil Sci 50:207–216CrossRefGoogle Scholar
  28. Khademi H, Mermut AR, Krouse RH (1997) Isotopic composition of gypsum hydration water in selected landforms from Central Iran. ChemGeol 138:245–255CrossRefGoogle Scholar
  29. Khademi H, Mermut AR (2003) Micromorphology and Classification of Argids and Associated Gypsiferous Aridisols from Central Iran. Catena 54:439–455CrossRefGoogle Scholar
  30. Khormali F, Abtahi A, Stoops G (2006) Micromorphology of Calcic Features in Highly Calcareous Soils of Fars Province, Southern Iran. Geoderma 132:31–45CrossRefGoogle Scholar
  31. Khormali F, Abtahi A, Mahmoodi S, Stoops G (2003) Argillic horizon development in calcareous soils of arid and semiarid regions of southern Iran. Catena 53:273–301CrossRefGoogle Scholar
  32. Khormali F, Ghergherechi S, Kehl M, Ayoubi S (2012) Soil formation in loess-derived soils along a subhumid to humid climate gradient, Northeastern Iran. Geoderma 179–180:113–122CrossRefGoogle Scholar
  33. Khormali F, Kehl M (2011) Micromorphology and development of loess-derived surface and buried soils along a precipitation gradient in Northern Iran. Quat Int 234:109–123CrossRefGoogle Scholar
  34. Lauer T, Frechen M, Vlaminck S, Kehl M, Lehndorff E, Shahriari A, Khormali, F (2017a) Luminescence-chronology of the loess palaeosol sequence Toshan, Northern Iran—A highly resolved climate archive for the last glacial-interglacial cycle. Quat Int 429: 3–12Google Scholar
  35. Lauer T, Vlaminck S, Frechen M, Rolf C, Kehl M, Sharifi J, Lehndorff E, Khormali F (2017b) The Agh Band loess-palaeosol sequence—A terrestrial archive for climatic shifts during the last and penultimate glacial–interglacial cycles in a semiarid region in northern Iran. Quat Int 429:13–30Google Scholar
  36. Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003Google Scholar
  37. Mason JA, Jacobs PM (2007) Nature of Paleosols. Encyclopedia of Quaternary Science. UK, Elsevier, Oxford, pp 2086–2095CrossRefGoogle Scholar
  38. Mehrjardi R, Mahmoodi S, Heidari A, Akbarzadeh A (2009) Micromorphological evidences of climatic change in Yazd region. Iran. J Mt Sci 6:162–172CrossRefGoogle Scholar
  39. Moussavi-Harami R, Mahboubi A, Nadjafi M, Brenner RL, Mortazavi M (2009) Mechanism of calcrete formation in the Lower Cretaceous (Neocomian) fluvial deposits, northeastern Iran based on petrographic, geochemical data. Cretac Res 30:1146–1156CrossRefGoogle Scholar
  40. Palmer AS (2007) Pedostratigraphy. Encyclopedia of Quaternary Science. UK, Elsevier, Oxford, pp 2847–2855CrossRefGoogle Scholar
  41. Pécsi M (1990) Loess is not just the accumulation of dust. Quat Int 7(8):1–21CrossRefGoogle Scholar
  42. Pye K (1995) The nature, origin and accumulation of loess. QuatSci Rev 14:653–667CrossRefGoogle Scholar
  43. Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL, Clausen HB, Cvijanovic I, Dahl-Jensen D, Johnsen SJ, Fischer H, Gkinis V, Guillevic M, Hoek WZ, Lowe JJ, Pedro JB, Popp T, Seierstad IK, Steffensen JP, Svensson AM, Vallelonga P, Vinther BM, Walker MJC, Wheatley JJ, Winstrup M (2014) A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat Sci Rev 106:14–28CrossRefGoogle Scholar
  44. Retallack GJ (2001) Soils of the Past. An Introduction to Paleopedology.2nded, Blackwell, OxfordGoogle Scholar
  45. Rivandi B, VahidiniaM, Nadjafi M, Mahboubi A, Sadeghi A (2013) Biostratigraphy and sequence stratigraphy of paleogene deposits in central kopet-dagh basin (NE of Iran). J Geol Res, vol 2013. Article ID 892198.  10.1155/2013/892198
  46. Ruhe RV (1956) Geomorphic surfaces and the nature of soils. Soil Sci 82:441–455CrossRefGoogle Scholar
  47. Rutter NW, Rokosh D, Evans ME, Little EC, Chlachula J, Velichko AA (2003) Correlation and interpretation of paleosols across European Russia and Asia over the last interglacial-glacial cycle. Quat Res 60:101–109CrossRefGoogle Scholar
  48. Shahriari A, Khormali F, Bläsing M, Vlaminck S, Kehl M, Frechen M, Karimi A, Lehndorff E (2017) Biomarkers in modern and buried soils of semi-desert and forest ecosystems of northern Iran. Quat Int 429: 62–73Google Scholar
  49. Smalley IJ (1995) Making the material: The formation of silt-sized primary mineral particles for loess deposits. QuatSci Rev 14:645–651CrossRefGoogle Scholar
  50. Stevens L, Djamali M, Andrieu-Ponel V, de Beaulieu J-L (2012) Hydroclimatic variations over the last two glacial/interglacial cycles at Lake Urmia Iran. J Paleolimnol 47:645–660CrossRefGoogle Scholar
  51. SWRI - Soil and Water Research Institute Iran (2000) Soil resources and use potentiality map of Iran (1:1 000 000), TehranGoogle Scholar
  52. Taheri M, Khormali F, Wang X, Amini A, Wei H, Kehl M, Frechen M, Chen F (2017) Micromorphology of the lower Pleistocene loess in the Iranian Loess Plateau and its paleoclimatic implications. Quat Int 429:31–40Google Scholar
  53. Vlaminck S, Kehl M, Lauer T, Shahriari A, Sharifi J, Eckmeier E, Lehndorff E, Khormali F, Frechen M (2016) The loess-soil sequence at Toshan (Northern Iran): Insights into late Pleistocene climate change. Quat Int 399:122–135Google Scholar
  54. Wang X, Wei HT, Taheri M, Khormali F, Danukalova G, Chen FH (2016) Early Pleistocene climate in western arid central Asia inferred from loess-palaeosol sequences. Sci Rep 6:20560. doi: 10.1038/srep20560CrossRefGoogle Scholar
  55. Wang X, Wei H, Khormali F, Taheri M, Kehl M, Frechen M, Lauer T, Chen F (2017) Grain-size distribution of Pleistocene loess deposits in northern Iran and its palaeoclimatic implications. Quat Int 429:41–51Google Scholar
  56. Wright J (2001) “Desert” loess versus “glacial” loess: Quartz silt formation, source areas and sediment pathways in the formation of loess deposits. Geomorphology 36:231–256CrossRefGoogle Scholar
  57. Yaalon DH (1995) The soils we classify. Essay review of recent publications on soil taxonomy. Catena 24:233–241CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of CologneCologneGermany
  2. 2.Agricultural Sciences and Natural ResourcesGorgan UniversityGorganIran

Personalised recommendations