Advertisement

Regulation of the Extracellular Matrix by Heat Shock Proteins and Molecular Chaperones

  • Natasha Marie-Eraine Boel
  • Adrienne Lesley Edkins
Chapter

Abstract

The extracellular matrix (ECM) serves as a scaffold for cells within tissues and is composed of an intricate network of glycoproteins, growth factors and matricellular proteins which cooperatively function in cell processes such as migration, adhesion and wound healing. ECM morphology is constantly undergoing remodelling (synthesis, assembly and degradation) during normal cell processes and when deregulated may contribute to disease. Heat shock proteins (Hsps) are involved in regulating processes that determine the assembly and degradation of the ECM at multiple levels, in both normal and diseased states. These roles include mediating the activation of ECM-degrading enzymes, maintaining matrix stability and clearing aggregated/misfolded proteins. Hsp may serve as chaperones and receptors or have cytokine-like functions. In this chapter, we review how Hsp90, Hsp70, Hsp40 and a number of ER resident chaperones contribute to ECM regulation. The role of the non-Hsp chaperones, SPARC and clusterin in the ECM is also discussed.

Keywords

Extracellular matrix Chaperone Hsp90 Hsp70 Hsp40 sHsp 

Notes

Acknowledgements

This work is based on the research supported by the South African Research Chairs Initiative of the Department of Science and Technology, the National Research Foundation of South Africa (Grant No 98566), the South African Medical Research Council (SAMRC), the Cancer Association of South Africa (CANSA), and Rhodes University. NMEB was supported with a postgraduate fellowship from the National Research Foundation. The views expressed are those of the authors and should not be attributed to the DST, NRF, CANSA, SAMRC or Rhodes University. We apologise if we have inadvertently omitted any important contributions to the field.

References

  1. 1.
    Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19965464. Cited 28 Feb 2013PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hynes RO, Naba A (2012) Overview of the matrisome—an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol 4(1):a004903. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3249625&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2015) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27.  https://doi.org/10.1016/j.addr.2015.11.001 CrossRefPubMedGoogle Scholar
  4. 4.
    Tsen F, Bhatia A, O’Brien K, Cheng C-F, Chen M, Hay N et al (2013) Extracellular heat shock protein 90 signals through subdomain II and the NPVY motif of LRP-1 receptor to Akt1 and Akt2: a circuit essential for promoting skin cell migration in vitro and wound healing in vivo. Mol Cell Biol 33(24):4947–4959. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3889557&tool=pmcentrez&rendertype=abstract. Cited 17 July 2014PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hance MW, Nolan KD, Isaacs JS (2014) The double-edged sword: conserved functions of extracellular Hsp90 in wound healing and cancer. Cancers (Basel) 6:1065–1097CrossRefGoogle Scholar
  6. 6.
    Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance the extracellular matrix at a glance. J Cell Sci 2010:4195–4200CrossRefGoogle Scholar
  7. 7.
    Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:1–21CrossRefGoogle Scholar
  8. 8.
    Egeblad M, Rasch MG, Weaver VM (2010) Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol 22(5):697–706. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2948601&tool=pmcentrez&rendertype=abstract. Cited 29 Oct 2015PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Liu B, Dai J, Zheng H, Stoilova D, Sun S, Li Z (2003) Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases. Proc Natl Acad Sci U S A 100(26):15824–15829. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=307652&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Lee AS (2014) Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer 14(4):263–276PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Brekken RA, Sage EH (2000) SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol 19:816–827CrossRefGoogle Scholar
  12. 12.
    Bradshaw AD (2012) Diverse biological functions of the SPARC family of proteins. Int J Cell Biol 44(3):480–488CrossRefGoogle Scholar
  13. 13.
    Huang G, Greenspan DS (2012) ECM roles in the function of metabolic tissues. Trends Endocrinol Metab 23(1):16–22. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3251694&tool=pmcentrez&rendertype=abstract. Cited 17 July 2014PubMedCrossRefGoogle Scholar
  14. 14.
    Erler JT, Weaver VM (2009) Three-dimensional context regulation of metastasis. Clin Exp Metastasis 26(1):35–49PubMedCrossRefGoogle Scholar
  15. 15.
    Lin QC, Bissell MJ (1993) Multi-faceted regulation of of cell differentiation by extracellular matrix. FASEB J 7:737–743PubMedCrossRefGoogle Scholar
  16. 16.
    Bridgewater RE, Norman JC, Caswell PT (2012) Integrin trafficking at a glance. J Cell Sci 125(Pt 16):3695–3701. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3462077&tool=pmcentrez&rendertype=abstract. Cited 16 July 2014PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4(2):165–178. Available from: http://dmm.biologists.org/content/4/2/165 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bornstein P, Sage EH (2002) Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 14(5):608–616. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12231357 PubMedCrossRefGoogle Scholar
  19. 19.
    Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801. Available from: http://www.nature.com/doifinder/10.1038/nrm3904. Cited 21 Nov 2014PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Daley WP, Peters SB, Larsen M (2008) Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci 121(Pt 3):255–264. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18216330. Cited 4 Mar 2013PubMedCrossRefGoogle Scholar
  21. 21.
    Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16(5):558–564PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174. Available from: http://www.nature.com/doifinder/10.1038/nrc745 PubMedCrossRefGoogle Scholar
  23. 23.
    Davies KJ (2014) The complex interaction of matrix metalloproteinases in the migration of cancer cells through breast tissue stroma. Int J Breast Cancer 2014:839094. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3985306&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralGoogle Scholar
  24. 24.
    Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT et al (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2386807&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Levental KR, Yu H, Kass L, Lakins JN, Erler JT, SFT F et al (2010) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906CrossRefGoogle Scholar
  26. 26.
    Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1068408 PubMedCrossRefGoogle Scholar
  27. 27.
    Hendrick J, Hartl U (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62(1):349–384CrossRefPubMedGoogle Scholar
  28. 28.
    Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286(5446):1882–1888PubMedCrossRefGoogle Scholar
  29. 29.
    Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23746257. Cited 10 July 2014PubMedCrossRefGoogle Scholar
  30. 30.
    Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3):443–451.  https://doi.org/10.1016/j.cell.2006.04.014 CrossRefPubMedGoogle Scholar
  31. 31.
    Feng H, Zeng Y, Whitesell L, Katsanis E (2001) Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood 97(11):3505–3512PubMedCrossRefGoogle Scholar
  32. 32.
    Saito K, Dai Y, Ohtsuka K (2005) Enhanced expression of heat shock proteins in gradually dying cells and their release from necrotically dead cells. Exp Cell Res 310(1):229–236PubMedCrossRefGoogle Scholar
  33. 33.
    McCready J, Sims JD, Chan D, Jay DG (2010) Secretion of extracellular hsp90α via exosomes increases cancer cell motility : a role for plasminogen activation. BMC Cancer 10(294):1–10Google Scholar
  34. 34.
    Hegmans JPJJ, Bard MPL, Hemmes A, Luider TM, Kleijmeer MJ, Prins J-B et al (2004) Proteomic analysis of exosomes secreted by human mesothelioma cells. Am J Pathol 164(5):1807–1815.  https://doi.org/10.1016/S0002-9440(10)63739-X CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C et al (2004) Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 6(6):507–514. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15146192. Cited 9 July 2013PubMedCrossRefGoogle Scholar
  36. 36.
    Sottile J, Chandler J (2005) Fibronectin matrix turnover occurs through a caveolin-1-dependent process. Mol Biol Cell 16(2):757–768. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=545909&tool=pmcentrez&rendertype=abstract. Cited 4 Mar 2013PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Binder RJ, Anderson KM, Basu S, Srivastava PK (2000) Cutting edge: heat shock protein gp96 induces maturation and migration of CD11c+ cells in vivo. J Immunol 165(11):6029–6035. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11086034 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Binder RJ, Srivastava PK (2005) Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol 6(6):593–599. Available from: http://www.nature.com/ni/journal/v6/n6/pdf/ni1201.pdf CrossRefPubMedGoogle Scholar
  39. 39.
    Pawaria S, Messmer MN, Zhou YJ, Binder RJ (2011) A role for the heat shock protein-CD91 axis in the initiation of immune responses to tumors. Immunol Res 50(2–3):255–260PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Triantafilou M, Triantafilou K (2004) Heat-shock protein 70 and heat-shock protein 90 associate with toll-like receptor 4 in response to bacterial lipopolysaccharide. Biochem Soc Trans 32(Pt 4):636–639. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15270695\n http://www.biochemsoctrans.org/bst/032/0636/0320636.pdf PubMedCrossRefGoogle Scholar
  41. 41.
    Zhou YJ, Messmer MN, Binder RJ (2015) NIH Public Access 2(3):217–228Google Scholar
  42. 42.
    Reyes-del Valle J, Chavez-Salinas S, Medina F, Del Angel RM (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79(8):4557–4567. Available from: http://jvi.asm.org/content/79/8/4557.full.pdf+html PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wilson MR, Yerbury JJ, Poon S (2008) Extracellular chaperones and amyloids. In: Asea A, Brown I (eds) Heat shock proteins and the brain: implications for neurodegenerative diseases and neuroprotection. Springer Science, New York, pp 283–315CrossRefGoogle Scholar
  44. 44.
    Csala M, Kereszturi É, Mandl J, Bánhegyi G (2012) The endoplasmic reticulum as the extracellular space inside the cell: role in protein folding and glycosylation. Antioxid Redox Signal 16(10):1100–1108. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22149109 PubMedCrossRefGoogle Scholar
  45. 45.
    Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891–894PubMedCrossRefGoogle Scholar
  46. 46.
    Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001) Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286(3):433–442PubMedCrossRefGoogle Scholar
  47. 47.
    Pratt B (1998) The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Soc Exp Biol Med 217:420–434CrossRefGoogle Scholar
  48. 48.
    Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62(6):670–684PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Taipale M, Krykbaev I, Koeva M, Kayatekin C, Westover D, Karras GI et al (2012) Quantitative analysis of Hsp90-client interactions reveals principles of substrate recognition. Cell 150(5):987–1001PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ullrich SJ, Robinson EA, Law LW, Willinghamt M, Appella E (1986) A mouse tumor-specific transplantation antigen is a heat shock related protein. Proc Natl Acad Sci 83:3121–3125PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Sidera K, Samiotaki M, Yfanti E, Panayotou G, Patsavoudi E (2004) Involvement of cell surface HSP90 in cell migration reveals a novel role in the developing nervous system. J Biol Chem 279(44):45379–45388PubMedCrossRefGoogle Scholar
  52. 52.
    Sims JD, McCready J, Jay DG (2011) Extracellular heat shock protein (Hsp)70 and Hsp90α assist in matrix metalloproteinase-2 activation and breast cancer cell migration and invasion. PLoS One 6(4):e18848. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3077417&tool=pmcentrez&rendertype=abstract. Cited 24 Jan 2014PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hunter MC, O’Hagan KL, Kenyon A, Dhanani KCH, Prinsloo E, Edkins AL (2014) Hsp90 binds directly to fibronectin (FN) and inhibition reduces the extracellular fibronectin matrix in breast cancer cells. PLoS One 9(1):e86842. Available from: http://dx.plos.org/10.1371/journal.pone.0086842. Cited 27 Jan 2014PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Eustace BK, Jay DG (2004) Extracellular Roles for the molecular chaperone, Hsp90. Cell Cycle 3(9):1098–1100PubMedCrossRefGoogle Scholar
  55. 55.
    Shin BK, Wang H, Yim AM, Le Naour F, Brichory F, Jang JH et al (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278(9):7607–7616PubMedCrossRefGoogle Scholar
  56. 56.
    McKeown-Longo PJ, Mosher DF (1985) Interaction of the 70,000-mol-wt amino-terminal fragment of fibronectin with the matrix-assembly receptor of fibroblasts. J Cell Biol 100(2):364–374. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2113439&tool=pmcentrez&rendertype=abstract PubMedCrossRefGoogle Scholar
  57. 57.
    To WS, Midwood KS (2011) Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogenesis Tissue Repair 4(1):21. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3182887&tool=pmcentrez&rendertype=abstract. Cited 28 Apr 2014PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Sottile J, Hocking DC (2002) Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 13:3546–3559PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wierzbicka-Patynowski I, Schwarzbauer JE (2003) The ins and outs of fibronectin matrix assembly. J Cell Sci 116(Pt 16):3269–3276. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12857786. Cited 5 Mar 2013PubMedCrossRefGoogle Scholar
  60. 60.
    Ohashi T, Erickson HP (2009) Revisiting the mystery of fibronectin multimers: the fibronectin matrix is composed of fibronectin dimers cross-linked by non-covalent bonds. Matrix Biol 28(3):170–175. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2683204&tool=pmcentrez&rendertype=abstract. Cited 9 Nov 2014PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Arap MA, Lahdenranta J, Mintz PJ, Hajitou A, Sarkis AS, Arap W et al (2004) Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 6(3):275–284PubMedCrossRefGoogle Scholar
  62. 62.
    González-Ramos M, Calleros L, López-Ongil S, Raoch V, Griera M, Rodríguez-Puyol M et al (2013) HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 up-regulation. Int J Biochem Cell Biol 45(2):232–242. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23084979 PubMedCrossRefGoogle Scholar
  63. 63.
    Nagai N, Hosokawa M, Itohara S, Adachi E, Matsushita T, Hosokawa N et al (2000) Embryonic lethality of molecular chaperone Hsp47 knockout mice is associated with defects in collagen biosynthesis. J Cell Biol 150(6):1499–1505PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Zhu J, Xiong G, Fu H, Evers BM, Zhou BP, Xu R (2015) Chaperone Hsp47 drives malignant growth and invasion by modulating an ECM gene network. Cancer Res 75(8):1580–1591PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Taguchi T, Razzaque MS (2007) The collagen-specific molecular chaperone HSP47: is there a role in fibrosis? Trends Mol Med 13(2):45–53PubMedCrossRefGoogle Scholar
  66. 66.
    Ravindran S, Gao Q, Ramachandran A, Blond S, Predescu A, George A (2011) Stress chaperone Grp78 functions in mineralized matrix formation. J Biol Chem 286(11):8729–8739PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Li Z, Zhang L, Zhao Y, Li H, Xiao H, Fu R et al (2013) Cell-surface GRP78 facilitates colorectal cancer cell migration and invasion. Int J Biochem Cell Biol 45(5):987–994. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23485528 PubMedCrossRefGoogle Scholar
  68. 68.
    Zheng J, Luo W, Tanzer ML (1998) Aggrecan synthesis and secretion: a paradigm for molecular and cellular coordination of multiglobular protein folding and intracellular trafficking a paradigm for molecular and cellular coordination of multiglobular protein. J Biol Chem 273(21):12999–13006PubMedCrossRefGoogle Scholar
  69. 69.
    de Bock C, Lin Z, Mekkawy H, Byrne A, Wang Y (2010) Down-regulation of CacyBP is associated with poor prognosis and the effects on COX-2 expression in breast cancer. Int J Oncol 36:1155–1163PubMedGoogle Scholar
  70. 70.
    Lin Y, Peng N, Zhuang H, Zhang D, Wang Y, Hua ZC (2014) Heat shock proteins HSP70 and MRJ cooperatively regulate cell adhesion and migration through urokinase receptor. BMC Cancer 14:639. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25175595 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Bartl MM, Luckenbach T, Bergner O, Ullrich O, Koch-Brandt C (2001) Multiple receptors mediate apoJ-dependent clearance of cellular debris into nonprofessional phagocytes. Exp Cell Res 271(1):130–141. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11697889 PubMedCrossRefGoogle Scholar
  72. 72.
    Zlokovic BV, Martel CL, Matsubara E, McComb JG, Zheng G, McCluskey RT et al (1996) Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood-brain and blood-cerebrospinal fluid barriers. Proc Natl Acad Sci U S A 93(9):4229–4234PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Tsutsumi S, Scroggins B, Koga F, Lee M-J, Trepel J, Felts S et al (2008) A small molecule cell-impermeant Hsp90 antagonist inhibits tumor cell motility and invasion. Oncogene 27(17):2478–2487. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17968312. Cited 21 Apr 2013PubMedCrossRefGoogle Scholar
  74. 74.
    Wozniak MA, Modzelewska K, Kwong L, Keely PJ (2004) Focal adhesion regulation of cell behavior. Biochim Biophys Acta 1692:103–119PubMedCrossRefGoogle Scholar
  75. 75.
    Haas TL (2005) Endothelial cell regulation of matrix metalloproteinases. Can J Physiol Pharmacol 83(1):1–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15759044 PubMedCrossRefGoogle Scholar
  76. 76.
    McCready J, Wong DS, Burlison JA, Ying W, Jay DG (2014) An impermeant ganetespib analog inhibits extracellular Hsp90-mediated cancer cell migration that involves lysyl oxidase 2-like protein. Cancers 6(2):1031–1046. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4074815&tool=pmcentrez&rendertype=abstract. Cited 20 Mar 2015PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Anelli T, Sitia R (2008) Protein quality control in the early secretory pathway. EMBO J 27(2):315–327. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2234347&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Hebert C, Norris K, Della CR, Reynolds M (1999) Cell surface colligin/Hsp47 associates with tetraspanin protein CD9 in epidermoid carcinoma cell lines. J Cell Biochem 73(3):248–258PubMedCrossRefGoogle Scholar
  79. 79.
    Ni M, Lee AS (2007) ER chaperones in mammalian development and human diseases. FEBS Lett 581(19):3641–3651PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Staron M, Yang Y, Liu B, Li J, Shen Y, Zuniga-Pflucker JC et al (2010) gp96, an endoplasmic reticulum master chaperone for integrins and Toll-like receptors, selectively regulates early T and B lymphopoiesis. Blood 115(12):2380–2390PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Luo B, Lam BS, Lee SH, Wey S, Zhou H, Wang M et al (2011) The endoplasmic reticulum chaperone protein GRP94 is required for maintaining hematopoietic stem cell interactions with the adult bone marrow niche. PLoS One 6(5):e20364PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Oldberg A, Antonsson P, Lindblom K, Heinegård D (1992) COMP (cartilage oligomeric matrix protein) is structurally related to the thrombospondins. J Biol Chem 267(31):22346–22350. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1429587 PubMedGoogle Scholar
  83. 83.
    Hecht JT, Nelson LD, Crowder E, Wang Y, Elder FF, Harrison WR, Francomano CA, Prange CK, Lennon GG, Deere M, Lawler J (1995) Mutations in exon 17B of cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia. Nat Genet 10(3):325–329PubMedCrossRefGoogle Scholar
  84. 84.
    Horton WA, Hecht JT (2001) Skeletal dysplasias, chondrodysplasias: disorders of cartilage matrix proteins chondrodysplasias. In: Royce MP, Steinmann B (eds) Connective tissue and its heritable disorders: molecular, genetic and medical aspects, 2nd edn. John Wiley and Sons Inc., New York, pp 909–937Google Scholar
  85. 85.
    Hecht JT, Hayes E, Snuggs M, Decker G, Montufar-Solis D, Doege K et al (2001) Calreticulin, PDI, Grp94 and BiP chaperone proteins are associated with retained COMP in pseudoachondroplasia chondrocytes. Matrix Biol 20(4):251–262PubMedCrossRefGoogle Scholar
  86. 86.
    Hecht JT, Deere M, Putnam E, Cole W, Vertel B, Chen H et al (1998) Characterization of cartilage oligomeric matrix protein (COMP) in human normal and pseudoachondroplasia musculoskeletal tissues. Matrix Biol 17(4):269–278PubMedCrossRefGoogle Scholar
  87. 87.
    Richter K, Buchner J (2011) Closing in on the Hsp90 chaperone-client relationship. Structure 19(4):445–446.  https://doi.org/10.1016/j.str.2011.03.007 CrossRefPubMedGoogle Scholar
  88. 88.
    Doran AC, Meller N, Mcnamara CA (2009) The role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol 28(5):812–819CrossRefGoogle Scholar
  89. 89.
    Kanwar RK, Kanwar JR, Wang D, Ormrod DJ, Krissansen GW (2001) Temporal expression of heat shock proteins 60 and 70 at lesion-prone sites during atherogenesis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 21(12):1991–1997. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11742875 PubMedCrossRefGoogle Scholar
  90. 90.
    Philips N, Keller T, Gonzalez S (2004) TGF beta-like regulation of matrix metalloproteinases by anti-transforming growth factor-beta, and anti-transforming growth factor-beta 1 antibodies in dermal fibroblasts: implications for wound healing. Wound Repair Regen 12(1):53–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14974965 PubMedCrossRefGoogle Scholar
  91. 91.
    Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J (2007) TGF-β signaling in vascular fibrosis. Cardiovasc Res 74(2):196–206PubMedCrossRefGoogle Scholar
  92. 92.
    Ong VH, Carulli MT, Xu S, Khan K, Lindahl G, Abraham DJ et al (2009) Cross-talk between MCP-3 and TGFbeta promotes fibroblast collagen biosynthesis. Exp Cell Res 315(2):151–161.  https://doi.org/10.1016/j.yexcr.2008.11.001 CrossRefPubMedGoogle Scholar
  93. 93.
    Asea A, Kabingu E, Stevenson MA, Calderwood SK (2000) HSP70 peptide-bearing and peptide-negative preparations act as chaperokines. Cell Stress Chaperones 5(5):425–431. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=312872&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Delpino A, Castelli M (2002) The 78 kDa glucose-regulated protein (GRP78/BIP) is expressed on the cell membrane, is released into cell culture medium and is also present in human peripheral circulation. Biosci Rep 22(3–4):407–420PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Hayakawa K, Hiramatsu N, Okamura M, Yamazaki H, Nakajima S, Yao J et al (2009) Acquisition of anergy to proinflammatory cytokines in nonimmune cells through endoplasmic reticulum stress response: a mechanism for subsidence of inflammation. J Immunol 182(2):1182–1191. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19124762 PubMedCrossRefGoogle Scholar
  96. 96.
    Misra K, Deedwania R, Pizzo SV (2005) Binding of activated a2-macroglobulin to its cell surface receptor Grp78 in 1-LN prostate cancer cells regulates PAK-2 dependent activation of LIMK. J Biol Chem 280(28):26278–26286PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Freyria AM, Ronziere MC, Boutillon MM, Herbage D (1995) Effect of retinoic acid on protein synthesis by foetal bovine chondrocytes in high-density culture: down-regulation of the glucose-regulated protein, GRP-78, and type II collagen. Biochem J 305:391–396. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7832751 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G et al (2003) Cell migration: integrating signals from front to back. Science 302:1704–1710PubMedCrossRefGoogle Scholar
  99. 99.
    Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev 11(8):579–592. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3003299&tool=pmcentrez&rendertype=abstract CrossRefGoogle Scholar
  100. 100.
    Mitra A, Fillmore RA, Metge BJ, Rajesh M, Xi Y, King J et al (2008) Large isoform of MRJ (DNAJB6) reduces malignant activity of breast cancer. Breast Cancer Res 10(2):1–13CrossRefGoogle Scholar
  101. 101.
    Sterrenberg JN, Blatch GL, Edkins AL (2011) Human DNAJ in cancer and stem cells. Cancer Lett 312(2):129–142.  https://doi.org/10.1016/j.canlet.2011.08.019 CrossRefPubMedGoogle Scholar
  102. 102.
    Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63(22):2560–2570PubMedCrossRefGoogle Scholar
  103. 103.
    Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Cyr MD, Ramos HC (2015) Specification of Hsp70 function by type I and type II Hsp40. In: Blatch LG, Edkins LA (eds) The networking of chaperones by co-chaperones. Springer, New York, pp 91–102Google Scholar
  105. 105.
    Rose JM, Novoselov SS, Robinson PA, Cheetham ME (2011) Molecular chaperone-mediated rescue of mitophagy by a Parkin RING1 domain mutant. Hum Mol Genet 20(1):16–27PubMedCrossRefGoogle Scholar
  106. 106.
    Blasi F, Carmeliet P (2002) uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3(12):932–943PubMedCrossRefGoogle Scholar
  107. 107.
    Madsen CD, Ferraris SM, Andolfo A, Cunningham O, Sidenius N (2007) uPAR-induced cell adhesion and migration: vitronectin provides the key. J Cell Biol 177(5):927–939PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kenny HA, Kaur S, Coussens LM, Lengyel E (2008) The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J Clin Invest 118(4):1367–1379PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Wei Y, Lukashev M, Simon DI, Bodary SC, Rosenberg S, Doyle MV et al (1996) All use subject to JSTOR terms and conditions regulation of integrin function by the urokinase receptor. Science 273(5281):1551–1555PubMedCrossRefGoogle Scholar
  110. 110.
    Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L (2001) Urokinase receptor and fibronectin regulate the ERK MAPK to p38 MAPK activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell 12:863–879PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Waltz DA, Natkin LR, Fujita RM, Wei Y, Chapman HA (1997) Plasmin and plasminogen activator inhibitor type 1 promote cellular motility by regulating the interaction between the urokinase receptor and vitronectin. J Clin Invest 100(1):58–67PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31(3):164–172PubMedCrossRefGoogle Scholar
  113. 113.
    Das S, Harris LG, Metge BJ, Liu S, Riker AI, Samant RS et al (2009) The hedgehog pathway transcription factor GLI1 promotes malignant behavior of cancer cells by up-regulating osteopontin. J Biol Chem 284(34):22888–22897PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Mitra A, Menezes ME, Pannell L, Mulekar M, Honkanen R, Shevde L et al (2012) DNAJB6 chaperones PP2A mediated dephosphorylation of GSK3β to downregulate β-catenin transcription target, osteopontin. Oncogene 31(41):4472–4483PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Davids W, El-Thaher HS, Nakai A, Nagata K, Miller D (1995) Modelling the three-dimensional structure of serpin/molecular chaperone hsp47. Bioorg Chem 23:427–438CrossRefGoogle Scholar
  116. 116.
    Kurkinen M, Taylor A, Garrels JI, Hogan BLM (1984) Cell surface-associated proteins which bind native type IV collagen or gelatin. J Biol Chem 259(9):5915–5922PubMedGoogle Scholar
  117. 117.
    Nagata K (1996) Hsp47: a collagen-specific molecular chaperone. TIBS Rev 21:23–26Google Scholar
  118. 118.
    Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation. J Biochem 316(Pt 1):1–11CrossRefGoogle Scholar
  119. 119.
    Masago Y, Hosoya A, Kawasaki K, Kawano S, Nasu A, Toguchida J et al (2012) The molecular chaperone Hsp47 is essential for cartilage and endochondral bone formation. J Cell Sci 125(Pt 5):1118–1128. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22492985 PubMedCrossRefGoogle Scholar
  120. 120.
    Ishida Y, Nagata K (2011) Hsp47 as a collagen-specific molecular chaperone. Methods Enzymol 499:167–182PubMedCrossRefGoogle Scholar
  121. 121.
    Wilson MR, Easterbrook-Smith SB (2000) Clusterin is a secreted mammalian chaperone. Trends Biochem Sci 25(3):95–98PubMedCrossRefGoogle Scholar
  122. 122.
    DJS H, Bruns RR (1983) On the state of aggregation of newly secreted procollagen. Proc Natl Acad Sci U S A 80:388–392CrossRefGoogle Scholar
  123. 123.
    Lamandé SR, Bateman JF (1999) Procollagen folding and assembly: the role of endoplasmic reticulum enzymes and molecular chaperones. Semin Cell Dev Biol 10(5):455–464PubMedCrossRefGoogle Scholar
  124. 124.
    Martinek N, Shahab J, Sodek J, Ringuette M (2007) Is an evolutionarily conserved collagen chaperone? J Dent Res 86(4):296–305PubMedCrossRefGoogle Scholar
  125. 125.
    Hosokawa N, Hohenadl C, Satoh M, Kühn K, Nagata K (1998) HSP47, a collagen-specific molecular chaperone, delays the secretion of type III procollagen transfected in human embryonic kidney cell line 293: a possible role for HSP47 in collagen modification. J Biochem 124(3):654–662. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9722680 PubMedCrossRefGoogle Scholar
  126. 126.
    Zhang X, Yang J-J, Kim S, Kim K-Y, Ahn S, Yang S (2010) An 8-gene signature, including methylated and down-regulated glutathione peroxidase 3, of gastric cancer. Int J Oncol 36:405–414PubMedGoogle Scholar
  127. 127.
    Curran CS, Keely PJ (2013) Breast tumor and stromal cell responses to TGF-β and hypoxia in matrix deposition. Matrix Biol 32(2):95–105.  https://doi.org/10.1016/j.matbio.2012.11.016 CrossRefPubMedGoogle Scholar
  128. 128.
    Chou J, Lin JH, Brenot A, Kim J, Provot S, Werb Z (2013) GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol 15(2):201–213. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3660859&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Sauk JJ, Nikitakis N, Siavash H (2005) Hsp47 a novel collagen binding serpin chaperone, autoantigen and therapeutic target. Front Biosci 10:107–118. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15574354 PubMedCrossRefGoogle Scholar
  130. 130.
    Sato Y, Murase K, Kato J, Kobune M, Sato T, Kawano Y et al (2008) Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol 26(4):431–442PubMedCrossRefGoogle Scholar
  131. 131.
    Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268(3):1517–1520PubMedGoogle Scholar
  132. 132.
    Watanabe H, Yamada Y, Kimata K (1998) Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J Biochem 124(4):687–693PubMedCrossRefGoogle Scholar
  133. 133.
    Tiffee JC, Griffin JP, Cooper LF (2000) Immunolocalization of stress proteins and extracellular matrix proteins in the rat tibia. Tissue Cell 32(2):141–147. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10855699 PubMedCrossRefGoogle Scholar
  134. 134.
    Bailey RW, Aronow B, Harmony JAK, Griswold MD (2002) Heat shock-initiated apoptosis is accelerated and removal of damaged cells is delayed in the testis of clusterin/ApoJ knock-out mice. Biol Reprod 66(4):1042–1053PubMedCrossRefGoogle Scholar
  135. 135.
    Michel D, Chatelain G, North S, Brun G (1997) Stress-induced transcription of the clusterin/apoJ gene. Biochem J 328:45–50. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1218885&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR (1999) Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274(11):6875–6881PubMedCrossRefGoogle Scholar
  137. 137.
    Chaari A, Hoarau-Vechot J, Ladjimi M (2013) Applying chaperones to protein-misfolding disorders: molecular chaperones against alpha-synuclein in Parkinson’s disease. Int J Biol Macromol 60:196–205.  https://doi.org/10.1016/j.ijbiomac.2013.05.032 CrossRefPubMedGoogle Scholar
  138. 138.
    Kim WS, Kågedal K, Halliday GM (2014) Alpha-synuclein biology in Lewy body diseases. Alzheimers Res Ther 6(5):73. Available from: http://alzres.com/content/6/5/73 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    French K, Yerbury JJ, Wilson MR (2008) Protease activation of α2-macroglobulin modulates a chaperone-like action with broad specificity. Biochemistry 47(4):1176–1185PubMedCrossRefGoogle Scholar
  140. 140.
    Narita M, Holtzman DM, Schwartz AL, Bu G (1997) Alpha2-macroglobulin complexes with and mediates the endocytosis of Beta-amyloid peptide via cell surface low-density lipoprotein receptor-related protein. J Neurochem 69(5):1904–1911PubMedCrossRefGoogle Scholar
  141. 141.
    Shibata M, Yamada S, Ram Kumar S, Calero M, Bading J, Frangione B et al (2000) Clearance of Alzheimer’s amyloid beta1-40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106(12):1489–1499PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Lane TF, Sage EH (1994) The biology of SPARC, a protein that modulates cell-matrix interactions. FASEB J 8(2):163–173PubMedCrossRefGoogle Scholar
  143. 143.
    Termine JD, Belcourt AB, Conn KM, Kleinman HK (1981) Mineral and collagen-binding proteins of fetal calf bone. J Biol Chem 256(20):10403–10408PubMedGoogle Scholar
  144. 144.
    Lane TF, Iruela-Arispe ML, Sage EH (1992) Regulation of gene expression by SPARC during angiogenesis in vitro. Changes in fibronectin, thrombospondin-1, and plasminogen activator inhibitor-1. J Biol Chem 267(23):16736–16745PubMedGoogle Scholar
  145. 145.
    Tremble PM, Lane TF, Sage EH, Werb Z (1993) SPARC, a secreted protein associated with morphogenesis and tissue remodeling, induces expression of metalloproteinases in fibroblasts through a novel extracellular matrix-dependent pathway. J Cell Biol 121(6):1433–1444PubMedCrossRefGoogle Scholar
  146. 146.
    Ingham KC, Brew SA, Migliorini M (2002) Type I collagen contains at least 14 cryptic fibronectin binding sites of similar affinity. Arch Biochem Biophys 407(2):217–223PubMedCrossRefGoogle Scholar
  147. 147.
    Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410(3):439–453. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18290764. Cited 25 May 2013PubMedCrossRefGoogle Scholar
  148. 148.
    Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the Hsp90/Hsp70-based chaperone machinery. Exp Biol Med 228:111–133CrossRefGoogle Scholar
  149. 149.
    Corriden R, Insel AP (2011) Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci Signal 3(104):1–57. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3146065&tool=pmcentrez&rendertype=abstract Google Scholar
  150. 150.
    Fitz JG (2007) Regulation of cellular AtP release. Trans Am Clin Clim Assoc 118:199–208. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1863605&tool=pmcentrez&rendertype=abstract Google Scholar
  151. 151.
    Orriss IR, Key ML, Hajjawi MOR, Arnett TR (2013) Extracellular ATP released by osteoblasts is a key local inhibitor of bone mineralisation. PLoS One 8(7):1–13CrossRefGoogle Scholar
  152. 152.
    Poon S, Easterbrook-Smith SB, Rybchyn MS, Carver JA, Wilson MR (2000) Clusterin is an ATP – independent chaperone with very broad substrate specificity that stabilizes stressed proteins in a folding-competent state. Biochemistry 39(51):15953–15960PubMedCrossRefGoogle Scholar
  153. 153.
    Li W, Sahu D, Tsen F (2011) Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim Biophys Acta 1823(3):730–741. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21982864. Cited 6 Mar 2013PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Khalil AA, Kabapy NF, Deraz SF, Smith C (2011) Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochim Biophys Acta 1816(2):89–104. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21605630. Cited 28 Oct 2013PubMedGoogle Scholar
  155. 155.
    Leavesley DI, Kashyap AS, Croll T, Sivaramakrishnan M, Shokoohmand A, Hollier BG et al (2013) Vitronectin–master controller or micromanager? IUBMB Life [Internet] 65(10):807–818. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24030926
  156. 156.
    Zhu J, Xiong G, Trinkle C, Xu R (2014) Integrated extracellular matrix signaling in mammary gland development and breast cancer progression. Histol Histopathol 29(9):1083–92Google Scholar
  157. 157.
    Preissner, KT, Reuning U (2011) Vitronectin in vascular context: facets of a multitalented matricellular protein. Seminars in thrombosis and hemostasis, pp 408–24PubMedCrossRefGoogle Scholar
  158. 158.
    Halper J, Kjaer M (2013) No TitleBasic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. In: Halper J (ed) Progress in heritable soft connective tissue diseases. Springer, pp 31–47Google Scholar
  159. 159.
    Bellahcène A, Castronovo V, Ogbureke KUE, Fisher LW, Fedarko NS (2008) Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer [Internet] 8(3):212–26. Available from: http://dx.doi.org/10.1038/nrc2345 PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Narayanan K, Ramachandran A, Hao J, He G, Park KW, Cho M et al (2003) Dual functional roles of dentin matrix protein 1. Implications in biomineralization and gene transcription by activation of intracellular Ca2+ store. J Biol Chem 278(19):17500–17508PubMedCrossRefGoogle Scholar
  161. 161.
    Chlenski A, Guerrero LJ, Salwen HR, Yang Q, Tian Y, la Madrid A et al (2011) Secreted protein acidic and rich in cysteine is a matrix scavenger chaperone. PLoS One 6(9):e23880PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Adams JC, Lawler J (2011) The Thrombospondins. Cold Spring Harbor Perspectives in Biology [Internet]. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3179333&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Sodek J, Ganss B, McKee D (2000) Osteopontin. Crit Rev Oral Biol Med 1(3):279–303CrossRefGoogle Scholar
  164. 164.
    Oskarsson T, Acharyya S, Zhang XH-F, Vanharanta S, Tavazoie SF, Morris PG et al (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med [Internet]. 17(7):867–74. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4020577&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Natasha Marie-Eraine Boel
    • 1
  • Adrienne Lesley Edkins
    • 1
  1. 1.Biomedical Biotechnology Research Unit, Department of Biochemistry and MicrobiologyRhodes UniversityGrahamstownSouth Africa

Personalised recommendations