Advertisement

The Heat Shock Protein-CD91 Pathway and Tumor Immunosurveillance

  • Robert J. Binder
Chapter

Abstract

The intracellular functions of HSPs have been well studied and delineate a clear role in the unfolded protein response. The functions of extracellular HSPs are only beginning to be appreciated. Specifically, extracellular localization of HSPs endorses the initiation of immune responses against aberrant cells. This chapter examines the role of extracellular HSPs, and the receptor CD91, in immunosurveillance of cancers. Although the concept of cancer immunosurveillance was described over 100 years ago, a molecular description of how the immune responses is initiated has been lacking. Incorporating the HSP-CD91 pathway into cancer immunosurveillance provides the first mechanism of how immune responses are primed.

Keywords

Dendritic cell Chaperone Tumor immunity T regs 

References

  1. 1.
    Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677CrossRefGoogle Scholar
  2. 2.
    Jeng W, Lee S, Sung N, Lee J, Tsai FT (2015) Molecular chaperones: guardians of the proteome in normal and disease states. F1000Res 15:4Google Scholar
  3. 3.
    Li Z, Srivastava PK (1993) Tumor rejection antigen gp96/grp94 is an ATPase: implications for protein folding and antigen presentation. EMBO J 12:3143–3151PubMedPubMedCentralGoogle Scholar
  4. 4.
    Kunisawa J, Shastri N (2006) Hsp90alpha chaperones large C-terminally extended proteolytic intermediates in the MHC class I antigen processing pathway. Immunity 24:523–534CrossRefGoogle Scholar
  5. 5.
    Srivastava PK, Udono H, Blachere NE, Li Z (1994) Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 39:93–98CrossRefGoogle Scholar
  6. 6.
    Callahan MK, Garg M, Srivastava PK (2008) Heat-shock protein 90 associates with N-terminal extended peptides and is required for direct and indirect antigen presentation. Proc Natl Acad Sci U S A 105:1662–1667CrossRefGoogle Scholar
  7. 7.
    Demine R, Walden P (2005) Testing the role of gp96 as peptide chaperone in antigen processing. J Biol Chem 280:17573–17578CrossRefGoogle Scholar
  8. 8.
    Grossmann ME, Madden BJ, Gao F, Pang YP, Carpenter JE, McCormick D, Young CY (2004) Proteomics shows Hsp70 does not bind peptide sequences indiscriminately in vivo. Exp Cell Res 297:108–117CrossRefGoogle Scholar
  9. 9.
    Li HZ, Li CW, Li CY, Zhang BF, Li LT, Li JM, Zheng JN, Chang JW (2013) Isolation and identification of renal cell carcinoma-derived peptides associated with GP96. Technol Cancer Res Treat 12:285–293CrossRefGoogle Scholar
  10. 10.
    Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12:1539–1546CrossRefGoogle Scholar
  11. 11.
    Hunter MC, O’Hagan KL, Kenyon A, Dhanani KC, Prinsloo E, Edkins AL (2014) Hsp90 binds directly to fibronectin (FN) and inhibition reduces the extracellular fibronectin matrix in breast cancer cells. PLoS One 9:e86842CrossRefGoogle Scholar
  12. 12.
    Ferrarini M, Heltai S, Zocchi MR, Rugarli C (1992) Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer 51:613–619CrossRefGoogle Scholar
  13. 13.
    Srivastava PK, DeLeo AB, Old LJ (1986) Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci U S A 83:3407–3411CrossRefGoogle Scholar
  14. 14.
    Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391–1396CrossRefGoogle Scholar
  15. 15.
    Udono H, Srivastava PK (1994) Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J Immunol 152:5398–5403PubMedPubMedCentralGoogle Scholar
  16. 16.
    Basu S, Srivastava PK (1999) Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity. J Exp Med 189:797–802CrossRefGoogle Scholar
  17. 17.
    Wang XY, Kazim L, Repasky EA, Subjeck JR (2001) Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity. J Immunol 166:490–497CrossRefGoogle Scholar
  18. 18.
    Navaratnam M, Deshpande MS, Hariharan MJ, Zatechka DS Jr, Srikumaran S (2001) Heat shock protein-peptide complexes elicit cytotoxic T-lymphocyte and antibody responses specific for bovine herpesvirus 1. Vaccine 19:1425–1434CrossRefGoogle Scholar
  19. 19.
    Gong X, Gai W, Xu J, Zhou W, Tien P (2009) Glycoprotein 96-mediated presentation of human immunodeficiency virus type 1 (HIV-1)-specific human leukocyte antigen class I-restricted peptide and humoral immune responses to HIV-1 p24. Clin Vaccine Immunol 16:1595–1600CrossRefGoogle Scholar
  20. 20.
    Pawaria S, Binder RJ (2011) CD91-dependent programming of T-helper cell responses following heat shock protein immunization. Nat Commun 2:521.  https://doi.org/10.1038/ncomms1524 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chandawarkar RY, Wagh MS, Srivastava PK (1999) The dual nature of specific immunological activity of tumor-derived gp96 preparations. J Exp Med 189:1437–1442CrossRefGoogle Scholar
  22. 22.
    Chandawarkar RY, Wagh MS, Kovalchin JT, Srivastava P (2004) Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis. Int Immunol 16:615–624CrossRefGoogle Scholar
  23. 23.
    Li X, Liu Z, Yan X, Zhang X, Li Y, Zhao B, Wang S, Zhou X, Gao GF, Meng S (2013) Induction of regulatory T cells by high-dose gp96 suppresses murine liver immune hyperactivation. PLoS One 8:e68997CrossRefGoogle Scholar
  24. 24.
    Cohen IR (2014) Activation of benign autoimmunity as both tumor and autoimmune disease immunotherapy: a comprehensive review. J Autoimmun 54:112–117CrossRefGoogle Scholar
  25. 25.
    Wick G, Jakic B, Buszko M, Wick MC, Grundtman C (2014) The role of heat shock proteins in atherosclerosis. Nat Rev Cardiol 11:516–529CrossRefGoogle Scholar
  26. 26.
    Ueda G, Tamura Y, Hirai I, Kamiguchi K, Ichimiya S, Torigoe T, Hiratsuka H, Sunakawa H, Sato N (2004) Tumor-derived heat shock protein 70-pulsed dendritic cells elicit tumor-specific cytotoxic T lymphocytes (CTLs) and tumor immunity. Cancer Sci 95:248–253CrossRefGoogle Scholar
  27. 27.
    Ishii T, Udono H, Yamano T, Ohta H, Uenaka A, Ono T, Hizuta A, Tanaka N, Srivastava PK, Nakayama E (1999) Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J Immunol 162:1303–1309PubMedGoogle Scholar
  28. 28.
    Rivoltini L, Castelli C, Carrabba M, Mazzaferro V, Pilla L, Huber V, Coppa J, Gallino G, Scheibenbogen C, Squarcina P, Cova A, Camerini R, Lewis JJ, Srivastava PK, Parmiani G (2003) Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma- and colon carcinoma-specific T cells. J Immunol 171:3467–3474CrossRefGoogle Scholar
  29. 29.
    Suto R, Srivastava PK (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269:1585–1588CrossRefGoogle Scholar
  30. 30.
    Nieland TJ, Tan MC, Monne-van Muijen M, Koning F, Kruisbeek AM, van Bleek GM (1996) Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc Natl Acad Sci U S A 93:6135–6139CrossRefGoogle Scholar
  31. 31.
    Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S, Udono H, Srivastava PK (1997) Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 186:1315–1322CrossRefGoogle Scholar
  32. 32.
    Heikema A, Agsteribbe E, Wilschut J, Huckriede A (1997) Generation of heat shock protein-based vaccines by intracellular loading of gp96 with antigenic peptides. Immunol Lett 57:69–74CrossRefGoogle Scholar
  33. 33.
    Zügel U, Sponaas AM, Neckermann J, Schoel B, Kaufmann SH (2001) gp96-peptide vaccination of mice against intracellular bacteria. Infect Immun 69:4164–4167CrossRefGoogle Scholar
  34. 34.
    Meng SD, Gao T, Gao GF, Tien P (2001) HBV-specific peptide associated with heat-shock protein gp96. Lancet 357:528–529CrossRefGoogle Scholar
  35. 35.
    Arnold D, Faath S, Rammensee H, Schild H (1995) Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med 182:885–889CrossRefGoogle Scholar
  36. 36.
    Arnold D, Wahl C, Faath S, Rammensee HG, Schild H (1997) Influences of transporter associated with antigen processing (TAP) on the repertoire of peptides associated with the endoplasmic reticulum-resident stress protein gp96. J Exp Med 186:461–466CrossRefGoogle Scholar
  37. 37.
    Breloer M, Marti T, Fleischer B, von Bonin A (1998) Isolation of processed, H-2Kb-binding ovalbumin-derived peptides associated with the stress proteins HSP70 and gp96. Eur J Immunol 28:1016–1021CrossRefGoogle Scholar
  38. 38.
    Binder RJ, Kelly JB 3rd, Vatner RE, Srivastava PK (2007) Specific immunogenicity of heat shock protein gp96 derives from chaperoned antigenic peptides and not from contaminating proteins. J Immunol 179:7254–7261CrossRefGoogle Scholar
  39. 39.
    Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, Hendrickson WA (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606–1614CrossRefGoogle Scholar
  40. 40.
    Dollins DE, Warren JJ, Immormino RM, Gewirth DT (2007) Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones. Mol Cell 28:41–56CrossRefGoogle Scholar
  41. 41.
    Chouquet A, Païdassi H, Ling WL, Frachet P, Houen G, Arlaud GJ, Gaboriaud C (2011) X-ray structure of the human calreticulin globular domain reveals a peptide-binding area and suggests a multi-molecular mechanism. PLoS One 6:e17886CrossRefGoogle Scholar
  42. 42.
    Binder RJ (2009) Hsp receptors: the cases of identity and mistaken identity. Curr Opin Mol Ther 11(1):62–71PubMedGoogle Scholar
  43. 43.
    Binder RJ, Han DK, Srivastava PK (2000) CD91: a receptor for heat shock protein gp96. Nat Immunol 1:151–155CrossRefGoogle Scholar
  44. 44.
    Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313CrossRefGoogle Scholar
  45. 45.
    Matsutake T, Sawamura T, Srivastava PK (2010) High efficiency CD91- and LOX-1-mediated re-presentation of gp96-chaperoned peptides by MHC II molecules. Cancer Immun 10:7PubMedPubMedCentralGoogle Scholar
  46. 46.
    Tobian AA, Canaday DH, Boom WH, Harding CV (2004) Bacterial heat shock proteins promote CD91-dependent class I MHC cross-presentation of chaperoned peptide to CD8+ T cells by cytosolic mechanisms in dendritic cells versus vacuolar mechanisms in macrophages. J Immunol 172:5277–5286CrossRefGoogle Scholar
  47. 47.
    Binder RJ, Srivastava PK (2004) Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc Natl Acad Sci U S A 101:6128–6133CrossRefGoogle Scholar
  48. 48.
    Tobian AA, Canaday DH, Harding CV (2004) Bacterial heat shock proteins enhance class II MHC antigen processing and presentation of chaperoned peptides to CD4+ T cells. J Immunol 173:5130–5137CrossRefGoogle Scholar
  49. 49.
    Leone P, Berardi S, Frassanito MA, Ria R, De Re V, Cicco S, Battaglia S, Ditonno P, Dammacco F, Vacca A, Racanelli V (2015) Dendritic cells accumulate in the bone marrow of myeloma patients where they protect tumor plasma cells from CD8+ T-cell killing. Blood 126:1443–1451CrossRefGoogle Scholar
  50. 50.
    Salimu J, Spary LK, Al-Taei S, Clayton A, Mason MD, Staffurth J, Tabi Z (2015) Cross-presentation of the oncofetal tumor antigen 5T4 from irradiated prostate cancer cells—a key role for heat-shock protein 70 and receptor CD91. Cancer Immunol Res 3:678–688CrossRefGoogle Scholar
  51. 51.
    Wan T, Zhou X, Chen G, An H, Chen T, Zhang W, Liu S, Jiang Y, Yang F, Wu Y, Cao X (2004) Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood 103:1747–1754CrossRefGoogle Scholar
  52. 52.
    Messmer MN, Pasmowitz J, Kropp LE, Watkins SC, Binder RJ (2013) Identification of the cellular sentinels for native immunogenic heat shock proteins in vivo. J Immunol 191:4456–4465CrossRefGoogle Scholar
  53. 53.
    De Filippo A, Binder RJ, Camisaschi C, Beretta V, Arienti F, Villa A, Della Mina P, Parmiani G, Rivoltini L, Castelli C (2008) Human plasmacytoid dendritic cells interact with gp96 via CD91 and regulate inflammatory responses. J Immunol 181:6525–6535CrossRefGoogle Scholar
  54. 54.
    Staudt ND, Jo M, Hu J, Bristow JM, Pizzo DP, Gaultier A, VandenBerg SR, Gonias SL (2013) Myeloid cell receptor LRP1/CD91 regulates monocyte recruitment and angiogenesis in tumors. Cancer Res 73:3902–3912CrossRefGoogle Scholar
  55. 55.
    Becker L, Liu NC, Averill MM, Yuan W, Pamir N, Peng Y, Irwin AD, Fu X, Bornfeldt KE, Heinecke JW (2012) Unique proteomic signatures distinguish macrophages and dendritic cells. PLoS One 7:e33297CrossRefGoogle Scholar
  56. 56.
    Vénéreau E, Ceriotti C, Bianchi ME (2015) DAMPs from cell death to new life. Front Immunol 6:422CrossRefGoogle Scholar
  57. 57.
    Kawashima A, Tanigawa K, Akama T, Wu H, Sue M, Yoshihara A, Ishido Y, Kobiyama K, Takeshita F, Ishii KJ, Hirano H, Kimura H, Sakai T, Ishii N, Suzuki K (2011) Fragments of genomic DNA released by injured cells activate innate immunity and suppress endocrine function in the thyroid. Endocrinology 152:1702–1712CrossRefGoogle Scholar
  58. 58.
    Tanaka T, Okuya K, Kutomi G, Takaya A, Kajiwara T, Kanaseki T, Tsukahara T, Hirohashi Y, Torigoe T, Hirata K, Okamoto Y, Sato N, Tamura Y (2015) Heat shock protein 90 targets a chaperoned peptide to the static early endosome for efficient cross-presentation by human dendritic cells. Cancer Sci 106:18–24CrossRefGoogle Scholar
  59. 59.
    Srivastava PK, Callahan MK, Mauri MM (2009) Treating human cancers with heat shock protein-peptide complexes: the road ahead. Expert Opin Biol Ther 9:179–186CrossRefGoogle Scholar
  60. 60.
    Zhou YJ, Messmer MN, Binder RJ (2014) Establishment of tumor-associated immunity requires interaction of heat shock proteins with CD91. Cancer Immunol Res 2:217–228CrossRefGoogle Scholar
  61. 61.
    De Maio A (2011) Extracellular heat shock proteins, cellular export vesicles, and the stress observation system: a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa. Cell Stress Chaperones 16:235–249CrossRefGoogle Scholar
  62. 62.
    Huang QQ, Pope RM (2013) The role of glycoprotein 96 in the persistent inflammation of rheumatoid arthritis. Arch Biochem Biophys 530:1–6CrossRefGoogle Scholar
  63. 63.
    Martin CA, Carsons SE, Kowalewski R, Bernstein D, Valentino M, Santiago-Schwarz F (2003) Aberrant extracellular and dendritic cell (DC) surface expression of heat shock protein (hsp)70 in the rheumatoid joint: possible mechanisms of hsp/DC-mediated cross-priming. J Immunol 171:5736–5742CrossRefGoogle Scholar
  64. 64.
    Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216CrossRefGoogle Scholar
  65. 65.
    Ehrlich P (1906) Collected studies on immunity. John Wiley & Sons, LondonGoogle Scholar
  66. 66.
    Bashford E, Murray J, Haaland M (1908) Resistance and susceptibility to inoculated cancer. In: Bashford E (ed) Third scientific report on the investigations of the imperial cancer research fund. Taylor & Francis, London, pp 359–397Google Scholar
  67. 67.
    North RJ, Kirstein DP (1977) T-cell-mediated concomitant immunity to syngeneic tumors. I. Activated macrophages as the expressors of nonspecific immunity to unrelated tumors and bacterial parasites. J Exp Med 145:275–292CrossRefGoogle Scholar
  68. 68.
    Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111CrossRefGoogle Scholar
  69. 69.
    Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, Jacks T (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410:1111–1116CrossRefGoogle Scholar
  70. 70.
    Gatti RA, Good RA (1971) Occurrence of malignancy in immunodeficiency diseases. A literature review. Cancer 28:89−98CrossRefGoogle Scholar
  71. 71.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570CrossRefGoogle Scholar
  72. 72.
    Binder RJ, Srivastava PK (2005) Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol 6:593–599CrossRefGoogle Scholar
  73. 73.
    Li M, Davey GM, Sutherland RM, Kurts C, Lew AM, Hirst C, Carbone FR, Heath WR (2001) Cell-associated ovalbumin is cross-presented much more efficiently than soluble ovalbumin in vivo. J Immunol 166:6099–6103CrossRefGoogle Scholar
  74. 74.
    Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348:69–74CrossRefGoogle Scholar
  75. 75.
    Srivastava PK (2015) Neoepitopes of cancers: looking back, looking ahead. Cancer Immunol Res 3:969–977CrossRefGoogle Scholar
  76. 76.
    Delamarre L, Mellman I, Yadav M (2015) Cancer immunotherapy. Neo approaches to cancer vaccines. Science 348:760–761CrossRefGoogle Scholar
  77. 77.
    Srivastava PK (1996) Do human cancers express shared protective antigens? or the necessity of remembrance of things past. Semin Immunol 8:295–302CrossRefGoogle Scholar
  78. 78.
    Nasti TH, Rudemiller KJ, Cochran JB, Kim HK, Tsuruta Y, Fineberg NS, Athar M, Elmets CA, Timares L (2015) Immunoprevention of chemical carcinogenesis through early recognition of oncogene mutations. J Immunol 194:2683–2695CrossRefGoogle Scholar
  79. 79.
    North RJ (1984) The murine antitumor immune response and its therapeutic manipulation. Adv Immunol 35:89–155CrossRefGoogle Scholar
  80. 80.
    Norbury CC, Basta S, Donohue KB, Tscharke DC, Princiotta MF, Berglund P, Gibbs J, Bennink JR, Yewdell JW (2004) CD8+ T cell cross-priming via transfer of proteasome substrates. Science 304:1318–1321CrossRefGoogle Scholar
  81. 81.
    Wolfers J, Lozier A, Raposo G, Regnault A, Théry C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7:297–303CrossRefGoogle Scholar
  82. 82.
    Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86–89CrossRefGoogle Scholar
  83. 83.
    Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z (2005) Induction of heat shock proteins in B-cell exosomes. J Cell Sci 118:3631–3638CrossRefGoogle Scholar
  84. 84.
    Dolan BP, Gibbs KD Jr, Ostrand-Rosenberg S (2006) Dendritic cells cross-dressed with peptide MHC class I complexes prime CD8+ T cells. J Immunol 177:6018–6024CrossRefGoogle Scholar
  85. 85.
    Campana S, De Pasquale C, Carrega P, Ferlazzo G, Bonaccorsi I (2015) Cross-dressing: an alternative mechanism for antigen presentation. Immunol Lett 168:349–354CrossRefGoogle Scholar
  86. 86.
    Ashley DM, Faiola B, Nair S, Hale LP, Bigner DD, Gilboa E (1997) Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med 186:1177–1182CrossRefGoogle Scholar
  87. 87.
    Neijssen J, Herberts C, Drijfhout JW, Reits E, Janssen L, Neefjes J (2005) Cross-presentation by intercellular peptide transfer through gap junctions. Nature 434:83–88CrossRefGoogle Scholar
  88. 88.
    Zhou YJ, Binder RJ (2014) The heat shock protein-CD91 pathway mediates tumor immunosurveillance. Oncoimmunology 3:e28222CrossRefGoogle Scholar
  89. 89.
    Tamura Y, Peng P, Liu K, Daou M, Srivastava PK (1997) Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278:117–120CrossRefGoogle Scholar
  90. 90.
    Gasser S, Raulet DH (2006) The DNA damage response arouses the immune system. Cancer Res 66:3959–3962CrossRefGoogle Scholar
  91. 91.
    Lauren B. Kinner-Bibeau, Abigail L. Sedlacek, Michelle N. Messmer, Simon C. Watkins, Robert J. Binder (2017) HSPs drive dichotomous T-cell immune responses via DNA methylome remodelling in antigen presenting cells. Nature Communications 8:15648CrossRefGoogle Scholar
  92. 92.
    Abigail L. Sedlacek, Lauren B. Kinner-Bibeau, Robert J. Binder (2016) Phenotypically distinct helper NK cells are required for gp96-mediated anti-tumor immunity. Scientific Reports 6 (1)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations