Molecular Chaperone Inhibitors

  • Michael A. Moses
  • Abbey D. Zuehlke
  • Len Neckers


Hsp70 and Hsp90 are molecular chaperones (heat shock proteins) that facilitate client protein maturation, stabilization of aggregation-prone proteins, quality control of misfolded proteins and maintenance of proteins in an activation-competent conformation. In general, these Hsps are part of the cellular proteostasis network that functions in normal and disease states to maintain protein homeostasis. Recent data suggest a role for certain components of the proteostasis network (e.g., the proteasome) in various aspects of immune responses, and lately molecular chaperones have also been suggested to play a role in immunity, although the exact nature of their function remains somewhat controversial. Given the growing importance of Hsp90 and Hsp70 in a number of different diseases, including cancer and neurodegenerative maladies, as well as their role in contributing to protein homeostasis in health and disease, pharmacologic targeting of Hsp70, Hsp90 and their respective co-chaperones remains an area of intense investigation, although the impact of Hsp inhibition on immune cells and systems remains poorly understood.


Heat shock protein 90 Heat shock protein 70 Proteostasis Chaperone inhibitors Co-chaperone inhibitors 


  1. 1.
    Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549PubMedCrossRefGoogle Scholar
  2. 2.
    Graner MW (2016) HSP90 and immune modulation in cancer. Adv Cancer Res 129:191–224PubMedCrossRefGoogle Scholar
  3. 3.
    Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91:8324–8328PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Mimnaugh EG, Chavany C, Neckers L (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271:22796–22801PubMedCrossRefGoogle Scholar
  5. 5.
    Schulte TW, Akinaga S, Soga S, Sullivan W, Stensgard B, Toft D, Neckers LM (1998) Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones 3:100–108PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Workman P, Burrows F, Neckers L, Rosen N (2007) Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci 1113:202–216PubMedCrossRefGoogle Scholar
  7. 7.
    Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E, Krutzsch H, Ochel HJ, Schulte TW, Sausville E, Neckers LM, Toft DO (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272:23843–23850PubMedCrossRefGoogle Scholar
  8. 8.
    Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239–250PubMedCrossRefGoogle Scholar
  9. 9.
    Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260–266PubMedCrossRefGoogle Scholar
  10. 10.
    Dutta R, Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25:24–28PubMedCrossRefGoogle Scholar
  11. 11.
    Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143:901–910PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Panaretou B, Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J 17:4829–4836PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lang W, Caldwell GW, Li J, Leo GC, Jones WJ, Masucci JA (2007) Biotransformation of geldanamycin and 17-allylamino-17-demethoxygeldanamycin by human liver microsomes: reductive versus oxidative metabolism and implications. Drug Metab Dispos 35:21–29PubMedCrossRefGoogle Scholar
  14. 14.
    Egorin MJ, Rosen DM, Wolff JH, Callery PS, Musser SM, Eiseman JL (1998) Metabolism of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) by murine and human hepatic preparations. Cancer Res 58:2385–2396PubMedGoogle Scholar
  15. 15.
    Sidera K, Patsavoudi E (2014) HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov 9:1–20PubMedCrossRefGoogle Scholar
  16. 16.
    Delmotte P, Delmotte-Plaque J (1953) A new antifungal substance of fungal origin. Nature 171:344PubMedCrossRefGoogle Scholar
  17. 17.
    Khandelwal A, Crowley VM, Blagg BS (2016) Natural product inspired N-terminal Hsp90 inhibitors: from bench to bedside? Med Res Rev 36:92–118PubMedCrossRefGoogle Scholar
  18. 18.
    Soga S, Neckers LM, Schulte TW, Shiotsu Y, Akasaka K, Narumi H, Agatsuma T, Ikuina Y, Murakata C, Tamaoki T, Akinaga S (1999) KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules. Cancer Res 59:2931–2938PubMedGoogle Scholar
  19. 19.
    Rowlands MG, Newbatt YM, Prodromou C, Pearl LH, Workman P, Aherne W (2004) High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal Biochem 327:176–183PubMedCrossRefGoogle Scholar
  20. 20.
    Chiosis G, Timaul MN, Lucas B, Munster PN, Zheng FF, Sepp-Lorenzino L, Rosen N (2001) A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol 8:289–299PubMedCrossRefGoogle Scholar
  21. 21.
    Chiosis G, Lucas B, Shtil A, Huezo H, Rosen N (2002) Development of a purine-scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorg Med Chem 10:3555–3564PubMedCrossRefGoogle Scholar
  22. 22.
    Caldas-Lopes E, Cerchietti L, Ahn JH, Clement CC, Robles AI, Rodina A, Moulick K, Taldone T, Gozman A, Guo Y, Wu N, de Stanchina E, White J, Gross SS, Ma Y, Varticovski L, Melnick A, Chiosis G (2009) Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci U S A 106:8368–8373PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Trendowski M (2015) PU-H71: an improvement on nature’s solutions to oncogenic Hsp90 addiction. Pharmacol Res 99:202–216PubMedCrossRefGoogle Scholar
  24. 24.
    Immormino RM, Kang Y, Chiosis G, Gewirth DT (2006) Structural and quantum chemical studies of 8-aryl-sulfanyl adenine class Hsp90 inhibitors. J Med Chem 49:4953–4960PubMedCrossRefGoogle Scholar
  25. 25.
    Patel HJ, Modi S, Chiosis G, Taldone T (2011) Advances in the discovery and development of heat-shock protein 90 inhibitors for cancer treatment. Expert Opin Drug Discov 6:559–587PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ohkubo S, Kodama Y, Muraoka H, Hitotsumachi H, Yoshimura C, Kitade M, Hashimoto A, Ito K, Gomori A, Takahashi K, Shibata Y, Kanoh A, Yonekura K (2015) TAS-116, a highly selective inhibitor of heat shock protein 90alpha and beta, demonstrates potent antitumor activity and minimal ocular toxicity in preclinical models. Mol Cancer Ther 14:14–22PubMedCrossRefGoogle Scholar
  27. 27.
    Beebe K, Mollapour M, Scroggins B, Prodromou C, Xu W, Tokita M, Taldone T, Pullen L, Zierer BK, Lee MJ, Trepel J, Buchner J, Bolon D, Chiosis G, Neckers L (2013) Posttranslational modification and conformational state of heat shock protein 90 differentially affect binding of chemically diverse small molecule inhibitors. Oncotarget 4:1065–1074PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Soti C, Vermes A, Haystead TA, Csermely P (2003) Comparative analysis of the ATP-binding sites of Hsp90 by nucleotide affinity cleavage: a distinct nucleotide specificity of the C-terminal ATP-binding site. Eur J Biochem 270:2421–2428PubMedCrossRefGoogle Scholar
  29. 29.
    Marcu MG, Chadli A, Bouhouche I, Catelli M, Neckers LM (2000) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275:37181–37186PubMedCrossRefGoogle Scholar
  30. 30.
    Yu XM, Shen G, Neckers L, Blake H, Holzbeierlein J, Cronk B, Blagg BS (2005) Hsp90 inhibitors identified from a library of novobiocin analogues. J Am Chem Soc 127:12778–12779PubMedCrossRefGoogle Scholar
  31. 31.
    Donnelly AC, Mays JR, Burlison JA, Nelson JT, Vielhauer G, Holzbeierlein J, Blagg BS (2008) The design, synthesis, and evaluation of coumarin ring derivatives of the novobiocin scaffold that exhibit antiproliferative activity. J Org Chem 73:8901–8920PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Eskew JD, Sadikot T, Morales P, Duren A, Dunwiddie I, Swink M, Zhang X, Hembruff S, Donnelly A, Rajewski RA, Blagg BS, Manjarrez JR, Matts RL, Holzbeierlein JM, Vielhauer GA (2011) Development and characterization of a novel C-terminal inhibitor of Hsp90 in androgen dependent and independent prostate cancer cells. BMC Cancer 11:468PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Yin Z, Henry EC, Gasiewicz TA (2009) (−)-Epigallocatechin-3-gallate is a novel Hsp90 inhibitor. Biochemistry 48:336–345PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Khandelwal A, Hall JA, Blagg BS (2013) Synthesis and structure-activity relationships of EGCG analogues, a recently identified Hsp90 inhibitor. J Org Chem 78:7859–7884PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Moses MA, Henry EC, Ricke WA, Gasiewicz TA (2015) The heat shock protein 90 inhibitor, (−)-epigallocatechin gallate, has anticancer activity in a novel human prostate cancer progression model. Cancer Prev Res (Phila) 8:249–257PubMedCentralCrossRefGoogle Scholar
  36. 36.
    Donnelly A, Blagg BS (2008) Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr Med Chem 15:2702–2717PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gidalevitz T, Stevens F, Argon Y (2013) Orchestration of secretory protein folding by ER chaperones. Biochim Biophys Acta 1833:2410–2424PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sreedhar AS, Kalmar E, Csermely P, Shen YF (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 562:11–15PubMedCrossRefGoogle Scholar
  39. 39.
    Patel PD, Yan P, Seidler PM, Patel HJ, Sun W, Yang C, Que NS, Taldone T, Finotti P, Stephani RA, Gewirth DT, Chiosis G (2013) Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2. Nat Chem Biol 9:677–684PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Duerfeldt AS, Peterson LB, Maynard JC, Ng CL, Eletto D, Ostrovsky O, Shinogle HE, Moore DS, Argon Y, Nicchitta CV, Blagg BS (2012) Development of a Grp94 inhibitor. J Am Chem Soc 134:9796–9804PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Muth A, Crowley V, Khandelwal A, Mishra S, Zhao J, Hall J, Blagg BS (2014) Development of radamide analogs as Grp94 inhibitors. Bioorg Med Chem 22:4083–4098PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Crowley VM, Khandelwal A, Mishra S, Stothert AR, Huard DJ, Zhao J, Muth A, Duerfeldt AS, Kizziah JL, Lieberman RL, Dickey CA, Blagg BS (2016) Development of glucose regulated protein 94-selective inhibitors based on the BnIm and radamide scaffold. J Med Chem 59:3471–3488PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Smith JR, Clarke PA, de Billy E, Workman P (2009) Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors. Oncogene 28:157–169PubMedCrossRefGoogle Scholar
  44. 44.
    Polier S, Samant RS, Clarke PA, Workman P, Prodromou C, Pearl LH (2013) ATP-competitive inhibitors block protein kinase recruitment to the Hsp90-Cdc37 system. Nat Chem Biol 9:307–312PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Wang W, Liu Y, Zhao Z, Xie C, Xu Y, Hu Y, Quan H, Lou L (2016) Y-632 inhibits Hsp90 function through disrupting the interaction of Hsp90-Hop and exerts antitumor activity in vitro and in vivo. Cancer Sci 107(6):782–790PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Baughman G, Wiederrecht GJ, Campbell NF, Martin MM, Bourgeois S (1995) FKBP51, a novel T-cell-specific immunophilin capable of calcineurin inhibition. Mol Cell Biol 15:4395–4402PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gaali S, Kirschner A, Cuboni S, Hartmann J, Kozany C, Balsevich G, Namendorf C, Fernandez-Vizarra P, Sippel C, Zannas AS, Draenert R, Binder EB, Almeida OF, Ruhter G, Uhr M, Schmidt MV, Touma C, Bracher A, Hausch F (2015) Selective inhibitors of the FK506-binding protein 51 by induced fit. Nat Chem Biol 11:33–37PubMedCrossRefGoogle Scholar
  48. 48.
    Chadli A, Felts SJ, Wang Q, Sullivan WP, Botuyan MV, Fauq A, Ramirez-Alvarado M, Mer G (2010) Celastrol inhibits Hsp90 chaperoning of steroid receptors by inducing fibrillization of the Co-chaperone p23. J Biol Chem 285:4224–4231PubMedCrossRefGoogle Scholar
  49. 49.
    Patwardhan CA, Fauq A, Peterson LB, Miller C, Blagg BS, Chadli A (2013) Gedunin inactivates the co-chaperone p23 protein causing cancer cell death by apoptosis. J Biol Chem 288:7313–7325PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sondermann H, Scheufler C, Schneider C, Hohfeld J, Hartl FU, Moarefi I (2001) Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291:1553–1557PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Williamson DS, Borgognoni J, Clay A, Daniels Z, Dokurno P, Drysdale MJ, Foloppe N, Francis GL, Graham CJ, Howes R, Macias AT, Murray JB, Parsons R, Shaw T, Surgenor AE, Terry L, Wang Y, Wood M, Massey AJ (2009) Novel adenosine-derived inhibitors of 70 kDa heat shock protein, discovered through structure-based design. J Med Chem 52:1510–1513PubMedCrossRefGoogle Scholar
  52. 52.
    Assimon VA, Gillies AT, Rauch JN, Gestwicki JE (2013) Hsp70 protein complexes as drug targets. Curr Pharm Des 19:404–417PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Massey AJ, Williamson DS, Browne H, Murray JB, Dokurno P, Shaw T, Macias AT, Daniels Z, Geoffroy S, Dopson M, Lavan P, Matassova N, Francis GL, Graham CJ, Parsons R, Wang Y, Padfield A, Comer M, Drysdale MJ, Wood M (2010) A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother Pharmacol 66:535–545PubMedCrossRefGoogle Scholar
  54. 54.
    Boroughs LK, Antonyak MA, Johnson JL, Cerione RA (2011) A unique role for heat shock protein 70 and its binding partner tissue transglutaminase in cancer cell migration. J Biol Chem 286:37094–37107PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Santos F, Nequiz M, Hernandez-Cuevas NA, Hernandez K, Pineda E, Encalada R, Guillen N, Luis-Garcia E, Saralegui A, Saavedra E, Perez-Tamayo R, Olivos-Garcia A (2015) Maintenance of intracellular hypoxia and adequate heat shock response are essential requirements for pathogenicity and virulence of Entamoeba histolytica. Cell Microbiol 17:1037–1051PubMedCrossRefGoogle Scholar
  56. 56.
    Williams DR, Ko SK, Park S, Lee MR, Shin I (2008) An apoptosis-inducing small molecule that binds to heat shock protein 70. Angew Chem Int Ed Engl 47:7466–7469PubMedCrossRefGoogle Scholar
  57. 57.
    Evans LE, Cheeseman MD, Yahya N, Jones K (2015) Investigating apoptozole as a chemical probe for HSP70 inhibition. PLoS One 10:e0140006PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Ko SK, Kim J, Na DC, Park S, Park SH, Hyun JY, Baek KH, Kim ND, Kim NK, Park YN, Song K, Shin I (2015) A small molecule inhibitor of ATPase activity of HSP70 induces apoptosis and has antitumor activities. Chem Biol 22:391–403PubMedCrossRefGoogle Scholar
  59. 59.
    Koya K, Li Y, Wang H, Ukai T, Tatsuta N, Kawakami M, Shishido, Chen LB (1996) MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res 56:538–543PubMedGoogle Scholar
  60. 60.
    Chiba Y, Kubota T, Watanabe M, Otani Y, Teramoto T, Matsumoto Y, Koya K, Kitajima M (1998) Selective antitumor activity of MKT-077, a delocalized lipophilic cation, on normal cells and cancer cells in vitro. J Surg Oncol 69:105–110PubMedCrossRefGoogle Scholar
  61. 61.
    Tikoo A, Shakri R, Connolly L, Hirokawa Y, Shishido T, Bowers B, Ye LH, Kohama K, Simpson RJ, Maruta H (2000) Treatment of ras-induced cancers by the F-actin-bundling drug MKT-077. Cancer J 6:162–168PubMedGoogle Scholar
  62. 62.
    Wadhwa R, Sugihara T, Yoshida A, Nomura H, Reddel RR, Simpson R, Maruta H, Kaul SC (2000) Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function. Cancer Res 60:6818–6821PubMedGoogle Scholar
  63. 63.
    Rousaki A, Miyata Y, Jinwal UK, Dickey CA, Gestwicki JE, Zuiderweg ER (2011) Allosteric drugs: the interaction of antitumor compound MKT-077 with human Hsp70 chaperones. J Mol Biol 411:614–632PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Chiba Y, Kubota T, Watanabe M, Matsuzaki SW, Otani Y, Teramoto T, Matsumoto Y, Koya K, Kitajima M (1998) MKT-077, localized lipophilic cation: antitumor activity against human tumor xenografts serially transplanted into nude mice. Anticancer Res 18:1047–1052PubMedGoogle Scholar
  65. 65.
    Tatsuta N, Suzuki N, Mochizuki T, Koya K, Kawakami M, Shishido T, Motoji N, Kuroiwa H, Shigematsu A, Chen LB (1999) Pharmacokinetic analysis and antitumor efficacy of MKT-077, a novel antitumor agent. Cancer Chemother Pharmacol 43:295–301PubMedCrossRefGoogle Scholar
  66. 66.
    Wadhwa R, Colgin L, Yaguchi T, Taira K, Reddel RR, Kaul SC (2002) Rhodacyanine dye MKT-077 inhibits in vitro telomerase assay but has no detectable effects on telomerase activity in vivo. Cancer Res 62:4434–4438PubMedGoogle Scholar
  67. 67.
    Koren J 3rd, Miyata Y, Kiray J, O’Leary JC 3rd, Nguyen L, Guo J, Blair LJ, Li X, Jinwal UK, Cheng JQ, Gestwicki JE, Dickey CA (2012) Rhodacyanine derivative selectively targets cancer cells and overcomes tamoxifen resistance. PLoS One 7:e35566PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Abisambra J, Jinwal UK, Miyata Y, Rogers J, Blair L, Li X, Seguin SP, Wang L, Jin Y, Bacon J, Brady S, Cockman M, Guidi C, Zhang J, Koren J, Young ZT, Atkins CA, Zhang B, Lawson LY, Weeber EJ, Brodsky JL, Gestwicki JE, Dickey CA (2013) Allosteric heat shock protein 70 inhibitors rapidly rescue synaptic plasticity deficits by reducing aberrant tau. Biol Psychiatry 74:367–374PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Colvin TA, Gabai VL, Gong J, Calderwood SK, Li H, Gummuluru S, Matchuk ON, Smirnova SG, Orlova NV, Zamulaeva IA, Garcia-Marcos M, Li X, Young ZT, Rauch JN, Gestwicki JE, Takayama S, Sherman MY (2014) Hsp70-Bag3 interactions regulate cancer-related signaling networks. Cancer Res 74:4731–4740PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wang AM, Miyata Y, Klinedinst S, Peng HM, Chua JP, Komiyama T, Li X, Morishima Y, Merry DE, Pratt WB, Osawa Y, Collins CA, Gestwicki JE, Lieberman AP (2013) Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat Chem Biol 9:112–118PubMedCrossRefGoogle Scholar
  71. 71.
    Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP (2015) Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol 55:353–371PubMedCrossRefGoogle Scholar
  72. 72.
    Li X, Srinivasan SR, Connarn J, Ahmad A, Young ZT, Kabza AM, Zuiderweg ER, Sun D, Gestwicki JE (2013) Analogs of the allosteric heat shock protein 70 (Hsp70) inhibitor, MKT-077, as anti-cancer agents. ACS Med Chem Lett 4.
  73. 73.
    Li X, Colvin T, Rauch JN, Acosta-Alvear D, Kampmann M, Dunyak B, Hann B, Aftab BT, Murnane M, Cho M, Walter P, Weissman JS, Sherman MY, Gestwicki JE (2015) Validation of the Hsp70-Bag3 protein-protein interaction as a potential therapeutic target in cancer. Mol Cancer Ther 14:642–648PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Taguwa S, Maringer K, Li X, Bernal-Rubio D, Rauch JN, Gestwicki JE, Andino R, Fernandez-Sesma A, Frydman J (2015) Defining Hsp70 subnetworks in dengue virus replication reveals key vulnerability in flavivirus infection. Cell 163:1108–1123PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Howe MK, Bodoor K, Carlson DA, Hughes PF, Alwarawrah Y, Loiselle DR, Jaeger AM, Darr DB, Jordan JL, Hunter LM, Molzberger ET, Gobillot TA, Thiele DJ, Brodsky JL, Spector NL, Haystead TA (2014) Identification of an allosteric small-molecule inhibitor selective for the inducible form of heat shock protein 70. Chem Biol 21:1648–1659PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Howe MK, Speer BL, Hughes PF, Loiselle DR, Vasudevan S, Haystead TA (2016) An inducible heat shock protein 70 small molecule inhibitor demonstrates anti-dengue virus activity, validating Hsp70 as a host antiviral target. Antivir Res 130:81–92PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Rodina A, Patel PD, Kang Y, Patel Y, Baaklini I, Wong MJ, Taldone T, Yan P, Yang C, Maharaj R, Gozman A, Patel MR, Patel HJ, Chirico W, Erdjument-Bromage H, Talele TT, Young JC, Chiosis G (2013) Identification of an allosteric pocket on human hsp70 reveals a mode of inhibition of this therapeutically important protein. Chem Biol 20:1469–1480PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Chang L, Miyata Y, Ung PM, Bertelsen EB, McQuade TJ, Carlson HA, Zuiderweg ER, Gestwicki JE (2011) Chemical screens against a reconstituted multiprotein complex: myricetin blocks DnaJ regulation of DnaK through an allosteric mechanism. Chem Biol 18:210–221PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Fewell SW, Smith CM, Lyon MA, Dumitrescu TP, Wipf P, Day BW, Brodsky JL (2004) Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity. J Biol Chem 279:51131–51140PubMedCrossRefGoogle Scholar
  80. 80.
    Wisen S, Bertelsen EB, Thompson AD, Patury S, Ung P, Chang L, Evans CG, Walter GM, Wipf P, Carlson HA, Brodsky JL, Zuiderweg ER, Gestwicki JE (2010) Binding of a small molecule at a protein-protein interface regulates the chaperone activity of hsp70-hsp40. ACS Chem Biol 5:611–622PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Strom E, Sathe S, Komarov PG, Chernova OB, Pavlovska I, Shyshynova I, Bosykh DA, Burdelya LG, Macklis RM, Skaliter R, Komarova EA, Gudkov AV (2006) Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2:474–479PubMedCrossRefGoogle Scholar
  82. 82.
    Leu JI, Pimkina J, Frank A, Murphy ME, George DL (2009) A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 36:15–27PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Balaburski GM, Leu JI, Beeharry N, Hayik S, Andrake MD, Zhang G, Herlyn M, Villanueva J, Dunbrack RL Jr, Yen T, George DL, Murphy ME (2013) A modified HSP70 inhibitor shows broad activity as an anticancer agent. Mol Cancer Res 11:219–229PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Leu JI, Zhang P, Murphy ME, Marmorstein R, George DL (2014) Structural basis for the inhibition of HSP70 and DnaK chaperones by small-molecule targeting of a C-terminal allosteric pocket. ACS Chem Biol 9:2508–2516PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Zhang P, Leu JI, Murphy ME, George DL, Marmorstein R (2014) Crystal structure of the stress-inducible human heat shock protein 70 substrate-binding domain in complex with peptide substrate. PLoS One 9:e103518PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Leu JI, Pimkina J, Pandey P, Murphy ME, George DL (2011) HSP70 inhibition by the small-molecule 2-phenylethynesulfonamide impairs protein clearance pathways in tumor cells. Mol Cancer Res 9:936–947PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Schmitt E, Parcellier A, Gurbuxani S, Cande C, Hammann A, Morales MC, Hunt CR, Dix DJ, Kroemer RT, Giordanetto F, Jaattela M, Penninger JM, Pance A, Kroemer G, Garrido C (2003) Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis-inducing factor mutant. Cancer Res 63:8233–8240PubMedGoogle Scholar
  88. 88.
    Schmitt E, Maingret L, Puig PE, Rerole AL, Ghiringhelli F, Hammann A, Solary E, Kroemer G, Garrido C (2006) Heat shock protein 70 neutralization exerts potent antitumor effects in animal models of colon cancer and melanoma. Cancer Res 66:4191–4197PubMedCrossRefGoogle Scholar
  89. 89.
    Rerole AL, Gobbo J, De Thonel A, Schmitt E, Pais de Barros JP, Hammann A, Lanneau D, Fourmaux E, Demidov ON, Micheau O, Lagrost L, Colas P, Kroemer G, Garrido C (2011) Peptides and aptamers targeting HSP70: a novel approach for anticancer chemotherapy. Cancer Res 71:484–495PubMedCrossRefGoogle Scholar
  90. 90.
    Dekker SL, Kampinga HH, Bergink S (2015) DNAJs: more than substrate delivery to HSPA. Front Mol Biosci 2:35PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Cassel JA, Ilyin S, McDonnell ME, Reitz AB (2012) Novel inhibitors of heat shock protein Hsp70-mediated luciferase refolding that bind to DnaJ. Bioorg Med Chem 20:3609–3614PubMedCrossRefGoogle Scholar
  92. 92.
    Azad AA, Zoubeidi A, Gleave ME, Chi KN (2015) Targeting heat shock proteins in metastatic castration-resistant prostate cancer. Nat Rev Urol 12:26–36PubMedCrossRefGoogle Scholar
  93. 93.
    Zoubeidi A, Zardan A, Beraldi E, Fazli L, Sowery R, Rennie P, Nelson C, Gleave M (2007) Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res 67:10455–10465PubMedCrossRefGoogle Scholar
  94. 94.
    Lamoureux F, Thomas C, Yin MJ, Fazli L, Zoubeidi A, Gleave ME (2014) Suppression of heat shock protein 27 using OGX-427 induces endoplasmic reticulum stress and potentiates heat shock protein 90 inhibitors to delay castrate-resistant prostate cancer. Eur Urol 66:145–155PubMedCrossRefGoogle Scholar
  95. 95.
    Shiota M, Bishop JL, Nip KM, Zardan A, Takeuchi A, Cordonnier T, Beraldi E, Bazov J, Fazli L, Chi K, Gleave M, Zoubeidi A (2013) Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer. Cancer Res 73:3109–3119PubMedCrossRefGoogle Scholar
  96. 96.
    Baylot V, Andrieu C, Katsogiannou M, Taieb D, Garcia S, Giusiano S, Acunzo J, Iovanna J, Gleave M, Garrido C, Rocchi P (2011) OGX-427 inhibits tumor progression and enhances gemcitabine chemotherapy in pancreatic cancer. Cell Death Dis 2:e221PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Lelj-Garolla B, Kumano M, Beraldi E, Nappi L, Rocchi P, Ionescu DN, Fazli L, Zoubeidi A, Gleave ME (2015) Hsp27 inhibition with OGX-427 sensitizes non-small cell lung cancer cells to erlotinib and chemotherapy. Mol Cancer Ther 14:1107–1116PubMedCrossRefGoogle Scholar
  98. 98.
    Hadchity E, Aloy MT, Paulin C, Armandy E, Watkin E, Rousson R, Gleave M, Chapet O, Rodriguez-Lafrasse C (2009) Heat shock protein 27 as a new therapeutic target for radiation sensitization of head and neck squamous cell carcinoma. Mol Ther 17:1387–1394PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Zhang H, Kim JK, Edwards CA, Xu Z, Taichman R, Wang CY (2005) Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 7:909–915PubMedCrossRefGoogle Scholar
  100. 100.
    Lamoureux F, Thomas C, Yin MJ, Kuruma H, Beraldi E, Fazli L, Zoubeidi A, Gleave ME (2011) Clusterin inhibition using OGX-011 synergistically enhances Hsp90 inhibitor activity by suppressing the heat shock response in castrate-resistant prostate cancer. Cancer Res 71:5838–5849PubMedCrossRefGoogle Scholar
  101. 101.
    Matsumoto H, Yamamoto Y, Shiota M, Kuruma H, Beraldi E, Matsuyama H, Zoubeidi A, Gleave M (2013) Cotargeting androgen receptor and clusterin delays castrate-resistant prostate cancer progression by inhibiting adaptive stress response and AR stability. Cancer Res 73:5206–5217PubMedCrossRefGoogle Scholar
  102. 102.
    Chi KN, Eisenhauer E, Fazli L, Jones EC, Goldenberg SL, Powers J, Tu D, Gleave ME (2005) A phase I pharmacokinetic and pharmacodynamic study of OGX-011, a 2′-methoxyethyl antisense oligonucleotide to clusterin, in patients with localized prostate cancer. J Natl Cancer Inst 97:1287–1296PubMedCrossRefGoogle Scholar
  103. 103.
    Chi KN, Hotte SJ, Yu EY, Tu D, Eigl BJ, Tannock I, Saad F, North S, Powers J, Gleave ME, Eisenhauer EA (2010) Randomized phase II study of docetaxel and prednisone with or without OGX-011 in patients with metastatic castration-resistant prostate cancer. J Clin Oncol 28:4247–4254PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Michael A. Moses
    • 1
  • Abbey D. Zuehlke
    • 1
  • Len Neckers
    • 1
  1. 1.Urologic Oncology Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaUSA

Personalised recommendations