Skip to main content

Specification-Governed Telecommunication and High-Frequency-Electronics Aspects of Low-Noise Amplifier Research

  • Chapter
  • First Online:
Millimeter-Wave Low Noise Amplifiers

Part of the book series: Signals and Communication Technology ((SCT))

  • 1247 Accesses

Abstract

The first part of this chapter focuses on placing millimeter-wave research in the context of telecommunication. The second part focuses more strongly on some high-frequency amplifier electronics that were neglected in Chap. 1. In essence, this chapter aims to illustrate the convergence of communications, circuits and antennas, which is necessary in millimeter-wave LNA research. These apparently unrelated aspects of LNA research can furthermore be treated in a single chapter because they set the research constraints (i.e., result in design specifications). For example, there may be a requirement for a 60 GHz communication network deploying a certain type of modulation, but with a particular gain and noise figure; this, once again, illustrates the multidisciplinary nature of LNA research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rappaport TS, Murdock JN, Gutierrez F (2011) State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc IEEE 99(8):1390–1436

    Article  Google Scholar 

  2. International Telecommunication Union (2000) Nomenclature of the frequency and wavelength bands used in telecommunications. ITU-R Recommendation V.431 (internet). Available from: http://www.itu.int/rec/R-REC-V.431/en. Cited 19 May 2015

  3. du Preez J, Sinha S (2016) Millimeter-wave antennas: configurations and applications. Springer, Berlin

    Google Scholar 

  4. Baykas T, Sum CS, Lan Z, Wang J, Rahman MA, Harada H, Kato S (2011) IEEE, 802.15. 3c: the first IEEE wireless standard for data rates over 1 Gb/s. IEEE Commun Mag 49(7):114–121

    Article  Google Scholar 

  5. Perahia E, Cordeiro C, Park M, Yang LL. IEEE 802.11 ad: defining the next generation multi-Gbps Wi-Fi. In: 2010 7th IEEE consumer communications and networking conference; 2010; Las Vegas, pp 1–5

    Google Scholar 

  6. Hsiao YH, Chang YC, Tsai CH, Huang TY, Aloui S, Huang DJ, Chen YH, Tsai PH, Kao JC et al (2016) A 77-GHz 2T6R transceiver with injection-lock frequency sextupler using 65-nm CMOS for automotive radar system application. IEEE Trans Microw Theory Tech 64(10):3031–3048

    Google Scholar 

  7. Hasch J, Topak E, Schnabel R, Zwick T, Weigel R, Waldschmidt C (2012) Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans Microw Theory Tech 60(3):845–860

    Article  Google Scholar 

  8. Pozar M (2012) Microwave engineering, 4th edn. Wiley, Hoboken

    Google Scholar 

  9. Adhikari P (2008) Understanding millimeter wave wireless communication. White paper. Loea Corporation

    Google Scholar 

  10. du Preez J, Sinha S (2017) Millimeter-Wave Power Amplifiers. Springer, Cham

    Google Scholar 

  11. Proakis JG, Salehi M (2008) Digital communications, 5th edn. McGraw-Hill, New York

    Google Scholar 

  12. Raab FH, Asbeck P, Kenington PB, Cripps S, Popovic ZB, Pothecary N, Sevic JF, Sokal NO (2003) RF and microwave power amplifier and transmitter technologies—Part 1. High Freq. Electron. 2:22–36

    Google Scholar 

  13. Sinha S, Božanić M, Schoeman J, du Plessis M, Linde LP. A CMOS based multiple-access DSSS transceiver. In: 2009 South African conference on semi and superconductor technology; 2009; Stellenbosch, pp 19–24

    Google Scholar 

  14. Okada K, Li N,Matsushita K, Bunsen K, Murakami R, Musa A, Sato T, Asada H, Takayama N, Ito S, Chaivipas W (2011) A 60-GHz 16QAM/8PSK/QPSK/BPSK Direct-Conversion Transceiver for IEEE802.15.3c. IEEE J Solid State Circ 46(12):2988–3004

    Google Scholar 

  15. Cimini L (1985) Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Trans Commun 33(7):665–675

    Article  Google Scholar 

  16. Falconer D, Ariyavisitakul SL, Benyamin-Seeyar A, Eidson B (2002) Frequency domain equalization for single-carrier broadband wireless systems. IEEE Commun Mag 40(4):58–66

    Article  Google Scholar 

  17. Thompson SC, Ahmed AU, Proakis JG, Zeidler JR, Geile MJ (2008) Constant envelope OFDM. IEEE Trans Commun 56(8):1300–1312

    Article  Google Scholar 

  18. Cheng DK (1993) Fundamentals of engineering electromagnetics, 1st ed. Reading: Addison-Wesley Publishing Company

    Google Scholar 

  19. Kazimierczuk MK (2015) RF Power amplifiers, 2nd edn. Wiley, Chiechester

    Google Scholar 

  20. Robertson I, Somjit N, Chongcheawchamnan M (2016) Microwave and millimetre-wave design for wireless communications, 1st edn. Wiley, Chichester

    Google Scholar 

  21. Tummala RR, Swaminathan M (2008) System-on-package: miniaturization of the entire system, 1st edn. McGraw-Hill Professional, New York

    Google Scholar 

  22. Bowick C, Blyler J, Ajluni C (2008) RF circuit design, 2nd edn. Elsevier, Burlington

    Google Scholar 

  23. Ludwig R, Bretchko P (2000) RF circuit design: theory and applications, 1st edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  24. Pantoli L, Barigelli A, Leuzzi G, Vitulli F (2014) Analysis and design of a Q/V-band low-noise amplifier in GaAs-based 0.1 µm pHEMT technology. IET Microw Antennas Propag 10(14):1500–1506

    Article  Google Scholar 

  25. Feng G, Boon CC, Meng F, Yi X, Li C (2016) An 88.5–110 GHz CMOS low-noise amplifier for millimeter-wave imaging applications. IEEE Microw Wirel Compon Lett 26(2):134–136

    Article  Google Scholar 

  26. Lee TH (2004) The design of CMOS radio-frequency integrated circuits, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  27. Grebennikov A, Sokal NO, Franco MJ (2012) Switchmode RF and microwave power amplifiers, 2nd edn. Elsevier, Burlington

    Google Scholar 

  28. Agilent (2010) Fundamentals of RF and microwave noise figure measurement. Application note. Agilent, Santa Clara

    Google Scholar 

  29. Chen FY, Chen JF, Lin RL (2007) Low-harmonic push-pull class-E power amplifier with a pair of LC resonant networks. IEEE Trans Circ Syst I Regul Pap 54(3):579–589

    Article  Google Scholar 

  30. Lee YT, Chiong CC, Niu DC, Wang H (2014) A high gain E-band MMIC LNA in GaAs 0.1-μm pHEMT process for radio astronomy applications. In: 9th European microwave integrated circuit conference (EuMIC), Rome, pp 456–459

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen Božanić .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Božanić, M., Sinha, S. (2018). Specification-Governed Telecommunication and High-Frequency-Electronics Aspects of Low-Noise Amplifier Research. In: Millimeter-Wave Low Noise Amplifiers. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69020-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69020-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69019-3

  • Online ISBN: 978-3-319-69020-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics