Skip to main content

Introduction and Research Impact

  • Chapter
  • First Online:
Millimeter-Wave Low Noise Amplifiers

Part of the book series: Signals and Communication Technology ((SCT))

  • 1239 Accesses

Abstract

The opening chapter of this book seeks a research gap in the context of LNAs for millimeter-wave applications. It is organized as follows: LNA as a part of the millimeter-wave transceiver system are introduced. Following this introduction, some fundamental LNA concepts are presented, which aim to assist in defining a research gap relating to this topic. This serves as an aid in formulating research questions that are to be answered throughout the book. The chapter is concluded with the section on the organization of the book. As this chapter is merely an introduction, many concepts mentioned here will become more clear only later in the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Simulation Program with Integrated Circuit Emphasis.

References

  1. Rappaport TS, Murdock JN, Gutierrez F (2011) State of the art in 60 GHz integrated circuits and systems for wireless communications. Proc IEEE 99(8):1390–1436

    Article  Google Scholar 

  2. Samoska LA (2011) An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime. IEEE Trans Terahertz Sci Technol 1(1):9–24

    Article  Google Scholar 

  3. Rogers J, Plett C (2010) Radio frequency integrated circuit design, 2nd edn. Artech House, Boston

    Google Scholar 

  4. Robertson I, Somjit N, Chongcheawchamnan M (2016) Microwave and millimetre-wave design for wireless communications, 1st edn. Wiley, Chichester

    Google Scholar 

  5. Foty D, Smith B, Sinha S, Schröter M (2011) The wireless bandwidth crisis and the need for power-efficient bandwidth. In: 10th international symposium on signals, circuits and systems (ISSCS), Iasi, pp 1–6

    Google Scholar 

  6. Pozar M (2012) Microwave engineering, 4th edn. Wiley, Hoboken

    Google Scholar 

  7. Ludwig Bretchko (2000) RF circuit design: theory and applications, 1st edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  8. Gonzalez G (1997) Microwave transistor amplifiers: analysis and design, vol II. Prentice Hall, New Jersey

    Google Scholar 

  9. Reynolds SK, Floyd BA, Pfeiffer UR, Beukema T, Grzyb J, Haymes C, Gaucher B, Soyuer M (2006) A silicon 60-GHz receiver and transmitter chipset for broadband communications. IEEE J Solid State Circ 41(12):2820–2831

    Article  Google Scholar 

  10. Božanić M, Sinha S (2016) Power amplifiers for the S-, C-, X-and Ku-bands. Springer, Cham

    Google Scholar 

  11. du Preez J, Sinha S (2017) Millimeter-Wave Power Amplifiers. Springer, Cham

    Google Scholar 

  12. du Preez J, Sinha (2016) Millimeter-wave antennas: configurations and applications. Springer Nature, Cham

    Google Scholar 

  13. Razavi B (1997) Design considerations for direct-conversion receivers. IEEE Trans Circuits Syst II Analog Digital Signal Proc 44(6):428–435

    Article  Google Scholar 

  14. Okada K, Li N, Matsushita K, Bunsen K, Murakami R, Musa A, Sato T, Asada H, Takayama N, Ito S et al (2011) A 60-GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE802.15.3c. IEEE J Solid-State Circ 46(12):2988–3004

    Article  Google Scholar 

  15. Shahramian S, Baeyens Y, Kaneda N, Chen YK (2013) A 70–100 GHz direct-conversion transmitter and receiver phased array chipset demonstrating 10 Gb/s wireless link. IEEE J Solid-State Circ 48(15):1113–1125

    Article  Google Scholar 

  16. Razavi B (2008) A millimeter-wave CMOS heterodyne receiver with on-chip LO and divider. IEEE J Solid-State Circ 43(2):477–485

    Article  Google Scholar 

  17. Valdes-Garcia A, Nicolson ST, Lai JW, Natarajan A, Chen PY, Reynolds SK, Zhan JHC, Kam DG, Liu D, Floyd B (2010) A fully integrated 16-element phased-array transmitter in SiGe BiCMOS for 60-GHz communications. IEEE J Solid-State Circ 45(12):2757–2773

    Article  Google Scholar 

  18. Niknejad AM, Hashemi H (2008) mm-Wave silicon technology: 60 GHz and beyond. Springer

    Google Scholar 

  19. Pierco R, Torfs G, De Keulenaer T, Vandecasteele B, Missinne J, Bauwelinck J (2015) A Ka-band SiGe BiCMOS power amplifier with 24 dBm output power. Microw Opt Technol Lett 57(3):718–722

    Article  Google Scholar 

  20. Johnson EO (1965) Physical limitations on frequency and power parameters of transistors. RCA Rev 26:163–177

    Google Scholar 

  21. Baliga BJ (1989) Power semiconductor device figure of merit for high-frequency applications. Electron Device Lett 10(10):455–457

    Article  Google Scholar 

  22. Gordon M, Voinigescu SP (2004) An inductor-based 52-GHz 0.18/spl mu/m SiGe HBT cascode LNA with 22 dB gain. In: 30th european solid-state circuits conference Leuven, pp. 287–290

    Google Scholar 

  23. Tummala RR, Swaminathan M (2008) System-on-package: miniaturization of the entire system, 1st edn. McGraw-Hill Professional, New York

    Google Scholar 

  24. Greig WJ (2007) Integrated circuit packaging, assembly and interconnections, 1st edn. Springer, New York

    Google Scholar 

  25. Corporation IBM (2008) BiCMOS7WL design manual. IBM Corporation, Armonk

    Google Scholar 

  26. Canning T, Tasker PJ, Cripps SC (2014) Continuous mode power amplifier design using harmonic clipping contours: theory and practice. IEEE Trans Microw Theory Tech 62(1):100–110

    Article  Google Scholar 

  27. Pisek ES, Abu-Surra, Mott J, Henige T, Sharma R (2014) High throughput millimeter-wave MIMO beamforming system for short range communication. In: 2014 IEEE 11th consumer communications and networking conference (CCNC) Las Vegas, pp 537–543

    Google Scholar 

  28. Adhikari P (2008) Understanding millimeter wave wireless communication. Loea Corporation, White Paper

    Google Scholar 

  29. Hsiao YH, Chang YC, Tsai CH, Huang TY, Aloui S, Huang DJ, Chen YH, Tsai PH, Kao JC, YHL et al (2016) A 77-GHz 2T6R transceiver with injection-lock frequency sextupler using 65-nm CMOS for automotive radar system application. IEEE Trans Microw Theory Tech 64(10):3031–3048

    Google Scholar 

  30. Hasch J, Topak E, Schnabel R, Zwick T, Weigel R, Waldschmidt C (2012) Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans Microw Theory Tech 60(3):845–860

    Article  Google Scholar 

  31. Shan W, Yang J, Shi S, Yao Q, Zuo Y, Lin Z, Chen S, Zhang X, Duan W, Cao A et al (2012) Development of superconducting spectroscopic array receiver: a multibeam 2SB SIS receiver for millimeter-wave radio astronomy. IEEE Trans Terahertz Sci Technol 2(6):593–604

    Article  Google Scholar 

  32. Appleby R, Anderton RN (2007) Millimeter-wave and submillimeter-wave imaging for security and surveillance. Proc IEEE 95(8):1683–1690

    Article  Google Scholar 

  33. Tang A, Kim Y, Xu Y, Virbila G, Reck T, Chang MF (2017) Evaluation of 28 nm CMOS receivers at 183 GHz for space-borne atmospheric remote sensing. IEEE Microw Wirel Compon Lett 27(1):100–102

    Article  Google Scholar 

  34. Wehling JH (2005) Multifunction millimeter-wave systems for armored vehicle application. IEEE Trans Microw Theory Tech 53(3):1021–1025

    Article  Google Scholar 

  35. Hagelen M, Briese G, Essen H, Bertuch T, Knott P, Tessmann A (2008) A millimetrewave landing aid approach for helicopters under brown-out conditions. In: 2008 IEEE radar conference Rome, pp. 1–4

    Google Scholar 

  36. Soliman Y, MacEachern L, Roy L (2005) A CMOS ultra-wideband LNA utilizing a frequency-controlled feedback technique. In: 2005 IEEE international conference on ultra-wideband Zurich, pp. 530–535

    Google Scholar 

  37. Grebennikov A, Kumar N, Yarman BS (2015) Broadband RF and microwave amplifiers. CRC Press, Boca Raton

    Google Scholar 

  38. Ortega RD, Khemchandani SL, Vzquez HG, del Pino Surez FJ (2014) Design of low-noise amplifiers for ultra-wideband communications, 1st edn. McGraw-Hill Professional, New-York

    Google Scholar 

  39. Gray PR, Hurst PJ, Meyer RG, Lewis SH (2009) Analysis and design of analog integrated circuits, 5th edn. Wiley, Hoboken

    Google Scholar 

  40. Fritsche D, Tretter G, Carta C, Ellinger F (2015) Millimeter-wave low-noise amplifier design in 28-nm low-power digital CMOS. IEEE Trans Microw Theory Tech 63(6):1910–1922

    Article  Google Scholar 

  41. Chen AYK, Baeyens Y, Chen YK, Lin J (2010) A low-power linear SiGe BiCMOS low-noise amplifier for millimeter-wave active imaging. Microw Wirel Compon Lett 20(2):103–105

    Article  Google Scholar 

  42. Szczepkowski G, Farrell R (2014) Study of linearity and power consumption requirements of CMOS low noise amplifiers in context of LTE systems and beyond. ISRN Electronics 2014:1–11

    Article  Google Scholar 

  43. Hickman I, Practical RF (2006) Handbook, 4th edn. Newnes, Boston

    Google Scholar 

  44. Feng G, Boon CC, Meng F, Yi X, Li C (2016) An 88.5–110 GHz CMOS low-noise amplifier for millimeter-wave imaging applications. IEEE Microw Wirel Compon Lett 26(2):134–136

    Article  Google Scholar 

  45. Kumar R, Devi A, Sarkar A, Talukdar FA (2016) Design of 5.5 GHz linear low noise amplifier using post distortion technique with body biasing. Microsyst Technol 22(11):2681–2690

    Article  Google Scholar 

  46. Roberts GW, Sedra AS (1997) SPICE, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  47. Božanić M, Sinha S (2015) RF IC performance optimization by synthesizing optimum inductors. In: Computational intelligence in analog and mixed-signal (AMS) and radio-frequency (RF) circuit design, 1st edn. Springer Nature, Cham, pp. 297–330

    Google Scholar 

  48. Bruccoleri F, Klumperink EAM, Nauta B (2005) Wideband low noise amplifiers exploiting thermal noise cancellation, vol 840. Springer, New York

    MATH  Google Scholar 

  49. Chong ZY, Sansen W (2013) Low-noise wide-band amplifiers in bipolar and CMOS technologies, vol 117. Springer Science & Business Media, New York

    Google Scholar 

  50. Fukui H (1981) Low-noise microwave transistors and amplifiers. IEEE Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen Božanić .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Božanić, M., Sinha, S. (2018). Introduction and Research Impact. In: Millimeter-Wave Low Noise Amplifiers. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69020-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69020-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69019-3

  • Online ISBN: 978-3-319-69020-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics