Skip to main content

Tomographic Reconstruction from Electron Micrographs

  • Chapter
  • First Online:
Cellular Imaging

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1580 Accesses

Abstract

Reconstruction from a tilt series of electron micrographs is based on the assumption that each image represents a projection through the specimen, and that the 3D information can be recovered by “back-projecting” all the images in the correct geometry. We use algorithms that are integrative (back-projection or Fourier inversion) or iterative (algebraic or maximum entropy methods). In practical tomography, we can only record a finite set of images at a dose low enough to avoid radiation damage, yielding noisy tomograms with missing information. The quality of the tomograms depends on the algorithmic details, but also on the pre-processing of the tilt series images, and post-processing of the tomographic volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. D.J. De Rosier, A. Klug, Reconstruction of three dimensional structures from electron micrographs. Nature 217(5124), 130–134 (1968)

    Article  ADS  Google Scholar 

  2. J. Radon, On the determination of functions from their integral values along certain manifolds. IEEE Trans. Med. Imaging 5(4), 170–176 (1986). doi:10.1109/TMI.1986.4307775

    Article  Google Scholar 

  3. J. Radon {Ü}ber die {B}estimmung von {F}unktionen durch ihre {I}ntegralwerte längs gewisser {M}annigfaltigkeiten. Akad Wiss 69, 262–277. doi:citeulike-article-id:7680709 (1917)

    Google Scholar 

  4. G.T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projections (Springer Publishing Company, Incorporated, 2009)

    Book  MATH  Google Scholar 

  5. P.F.C. Gilbert, The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. II. Direct methods. Proc. R. Soc. Lond. B: Biol. Sci. 182(1066), 89–102 (1972). doi:10.1098/rspb.1972.0068

  6. R. Gordon, G.T. Herman, Reconstruction of pictures from their projections. Commun. ACM 14(12), 759–768 (1971). doi:10.1145/362919.362925

    Article  MATH  Google Scholar 

  7. G.P. Vigers, R.A. Crowther, B.M. Pearse, Three-dimensional structure of clathrin cages in ice. EMBO J. 5(3), 529–534 (1986)

    Google Scholar 

  8. R. Bracewell, Strip integration in radio astronomy. Aust. J. Phys. 9(2), 198–217 (1956). doi:http://dx.doi.org/10.1071/PH560198

  9. M. Radermacher, Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J. Electron Microsc Tech. 9(4), 359–394 (1988). doi:10.1002/jemt.1060090405

    Article  Google Scholar 

  10. M. Radermacher, Weighted back-projection methods, in Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell, ed. by J, Frank (Springer, New York, 2006), pp. 245–273. doi:10.1007/978-0-387-69008-7_9

  11. J.-M. Carazo, G.T. Herman, C.O.S. Sorzano, R. Marabini, Algorithms for three-dimensional reconstruction from the imperfect projection data provided by electron microscopy. in Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell ed. by J. Frank (Springer, New York, 2006), pp. 217–243. doi:10.1007/978-0-387-69008-7_8

  12. J.B. Heymann, G. Cardone, D.C. Winkler, A.C. Steven, Computational resources for cryo-electron tomography in Bsoft. J. Struct. Biol. 161(3), 232–242 (2008)

    Article  Google Scholar 

  13. R.A. Crowther, D.J. De Rosier, A, Klug, The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. 23 June 1970. Ser. A, Math. Phys. Sci. R. Soc. Lond., pp. 319–340

    Google Scholar 

  14. C.E. Shannon, Communication in the presence of noise. Proc. IEEE 86(2), 447–457 (1998). doi:10.1109/JPROC.1998.659497

    Article  Google Scholar 

  15. K. Sandberg, D.N. Mastronarde, G. Beylkin, A fast reconstruction algorithm for electron microscope tomography. J. Struct. Biol. 144(1–2), 61–72 (2003)

    Article  Google Scholar 

  16. Y. Chen, F. Forster, Iterative reconstruction of cryo-electron tomograms using nonuniform fast Fourier transforms. J. Struct. Biol. 185(3), 309–316 (2014). doi:10.1016/j.jsb.2013.12.001

    Article  Google Scholar 

  17. J. Miao, F. Förster, O. Levi, Equally sloped tomography with oversampling reconstruction. Phys. Rev. B 72(5), 052103 (2005)

    Article  ADS  Google Scholar 

  18. E. Lee, B.P. Fahimian, C.V. Iancu, C. Suloway, G.E. Murphy, E.R. Wright, D. Castano-Diez, G.J. Jensen, J. Miao, Radiation dose reduction and image enhancement in biological imaging through equally-sloped tomography. J. Struct. Biol. 164(2), 221–227 (2008). doi:10.1016/j.jsb.2008.07.011

    Article  Google Scholar 

  19. R. Gordon, R. Bender, G.T. Herman, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J. Theor. Biol. 29(3), 471–481 (1970)

    Article  Google Scholar 

  20. P. Gilbert, Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36(1), 105–117 (1972)

    Article  Google Scholar 

  21. A.H. Andersen, A.C. Kak, Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason. Imaging 6(1), 81–94 (1984)

    Article  Google Scholar 

  22. B. Turonova, L. Marsalek, T. Davidovic, P. Slusallek, Progressive stochastic reconstruction technique (PSRT) for cryo electron tomography. J. Struct. Biol. 189(3), 195–206 (2015). doi:10.1016/j.jsb.2015.01.011

    Article  Google Scholar 

  23. L. Wang, Y. Shkolnisky, A. Singer, in A Fourier-based Approach for Iterative 3D Reconstruction from Cryo-EM Images. ArXiv e-prints 1307 (2013)

    Google Scholar 

  24. U. Skoglund, L.G. Ofverstedt, R.M. Burnett, G. Bricogne, Maximum-entropy three-dimensional reconstruction with deconvolution of the contrast transfer function: a test application with adenovirus. J. Struct. Biol. 117(3), 173–188 (1996). doi:10.1006/jsbi.1996.0081

    Article  Google Scholar 

  25. S.F. Gull, T.J. Newton, Maximum entropy tomography. Appl. Opt. 25(1), 156 (1986)

    Article  ADS  Google Scholar 

  26. M.C. Lawrence, M.A. Jaffer, B.T. Sewell, The application of the maximum entropy method to electron microscopic tomography. Ultramicr 31(3), 285–301 (1989)

    Article  Google Scholar 

  27. J.R. Kremer, D.N. Mastronarde, J.R. McIntosh, Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116(1), 71–76 (1996)

    Article  Google Scholar 

  28. P. Engelhardt, Electron tomography of chromosome structure, in Encyclopedia of Analytical Chemistry (Wiley, New York, 2006). doi:10.1002/9780470027318.a1405

  29. M. Kunz, A.S. Frangakis, Super-sampling SART with ordered subsets. J. Struct. Biol. 188(2), 107–115 (2014). doi:10.1016/j.jsb.2014.09.010

    Article  Google Scholar 

  30. G.T. Herman, S.W. Rowland, Yau Mm, A comparative study of the use of linear and modified cubic spline interpolation for image reconstruction. IEEE Trans. Nucl. Sci. 26(2), 2879–2894 (1979). doi:10.1109/TNS.1979.4330555

    Article  ADS  Google Scholar 

  31. R. Marabini, G.T. Herman, J.M. Carazo, 3D reconstruction in electron microscopy using ART with smooth spherically symmetric volume elements (blobs). Ultramicr 72(1–2), 53–65 (1998)

    Article  Google Scholar 

  32. D. Wolf, A. Lubk, H. Lichte, Weighted simultaneous iterative reconstruction technique for single-axis tomography. Ultramicr 136, 15–25 (2014). doi:10.1016/j.ultramic.2013.07.016

    Article  Google Scholar 

  33. K.J. Batenburg, J. Sijbers, DART: a practical reconstruction algorithm for discrete tomography. IEEE Trans. Image Process. 20(9), 2542–2553 (2011). doi:10.1109/TIP.2011.2131661

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. J. Skilling, R.K. Bryan, Maximum entropy image reconstruction: general algorithm. Mon. Not. R. Astron. Soc. 211(1), 111–124 (1984). doi:10.1093/mnras/211.1.111

    Article  ADS  MATH  Google Scholar 

  35. J. Cope, J. Heumann, A. Hoenger, Cryo-electron tomography for structural characterization of macromolecular complexes. Curr. Protoc. Protein Sci. Chapter 17(Unit17), 13 (2011). doi:10.1002/0471140864.ps1713s65

    Google Scholar 

  36. K. Song, L.R. Comolli, M. Horowitz, Removing high contrast artifacts via digital inpainting in cryo-electron tomography: an application of compressed sensing. J. Struct. Biol. 178(2), 108–120 (2012). doi:10.1016/j.jsb.2012.01.003

    Article  Google Scholar 

  37. M. Maiorca, C. Millet, E. Hanssen, B. Abbey, E. Kazmierczak, L. Tilley, Local regularization of tilt projections reduces artifacts in electron tomography. J. Struct. Biol. 186(1), 28–37 (2014). doi:10.1016/j.jsb.2014.03.009

    Article  Google Scholar 

  38. M. Defrise, F. Noo, H. Kudo, A solution to the long-object problem in helical cone-beam tomography. Phys. Med. Biol. 45(3), 623–643 (2000)

    Article  Google Scholar 

  39. W. Xu, F. Xu, M. Jones, B. Keszthelyi, J. Sedat, D. Agard, K. Mueller, High-performance iterative electron tomography reconstruction with long-object compensation using graphics processing units (GPUs). J. Struct. Biol. 171(2), 142–153 (2010). doi:10.1016/j.jsb.2010.03.018

    Article  Google Scholar 

  40. B. Turonova, L. Marsalek, P. Slusallek, On geometric artifacts in cryo electron tomography. Ultramicr 163, 48–61 (2016). doi:10.1016/j.ultramic.2016.01.002

    Article  Google Scholar 

  41. M. Maiorca, E. Hanssen, E. Kazmierczak, B. Maco, M. Kudryashev, R. Hall, H. Quiney, L. Tilley, Improving the quality of electron tomography image volumes using pre-reconstruction filtering. J. Struct. Biol. 180(1), 132–142 (2012). doi:10.1016/j.jsb.2012.05.019

    Article  Google Scholar 

  42. V. Abrishami, J.R. Bilbao-Castro, J. Vargas, R. Marabini, J.M. Carazo, C.O. Sorzano, A fast iterative convolution weighting approach for gridding-based direct Fourier three-dimensional reconstruction with correction for the contrast transfer function. Ultramicr 157, 79–87 (2015). doi:10.1016/j.ultramic.2015.05.018

    Article  Google Scholar 

  43. J.J. Fernandez, S. Li, R.A. Crowther, CTF determination and correction in electron cryotomography. Ultramicr 106(7), 587–596 (2006). doi:10.1016/j.ultramic.2006.02.004

    Article  Google Scholar 

  44. J.A. Mindell, N. Grigorieff, Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142(3), 334–347 (2003)

    Article  Google Scholar 

  45. H. Winkler, K.A. Taylor, Focus gradient correction applied to tilt series image data used in electron tomography. J. Struct. Biol. 143(1), 24–32 (2003)

    Article  Google Scholar 

  46. Q. Xiong, M.K. Morphew, C.L. Schwartz, A.H. Hoenger, D.N. Mastronarde, CTF determination and correction for low dose tomographic tilt series. J. Struct. Biol. 168(3), 378–387 (2009). doi:10.1016/j.jsb.2009.08.016

    Article  Google Scholar 

  47. M. Eibauer, C. Hoffmann, J.M. Plitzko, W. Baumeister, S. Nickell, H. Engelhardt, Unraveling the structure of membrane proteins in situ by transfer function corrected cryo-electron tomography. J. Struct. Biol. 180(3), 488–496 (2012). doi:10.1016/j.jsb.2012.09.008

    Article  Google Scholar 

  48. F.K. Schur, W.J. Hagen, A. de Marco, J.A. Briggs, Determination of protein structure at 8.5A resolution using cryo-electron tomography and sub-tomogram averaging. J. Struct. Biol. 184(3), 394–400 (2013). doi:10.1016/j.jsb.2013.10.015

  49. A. Bartesaghi, F. Lecumberry, G. Sapiro, S. Subramaniam, Protein secondary structure determination by constrained single-particle cryo-electron tomography. Structure 20(12), 2003–2013 (2012). doi:10.1016/j.str.2012.10.016

    Article  Google Scholar 

  50. J.G. Galaz-Montoya, C.W. Hecksel, P.R. Baldwin, E. Wang, S.C. Weaver, M.F. Schmid, S.J. Ludtke, W. Chiu, Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography. J. Struct. Biol. 194(3), 383–394 (2016). doi:10.1016/j.jsb.2016.03.018

    Article  Google Scholar 

  51. D. Nemecek, J.B. Heymann, J. Qiao, L. Mindich, A.C. Steven, Cryo-electron tomography of bacteriophage φ6 procapsids shows random occupancy of the binding sites for RNA polymerase and packaging NTPase. J. Struct. Biol. 171(3), 389–396 (2010). doi:10.1016/j.jsb.2010.06.005

    Article  Google Scholar 

  52. P. van der Heide, X.P. Xu, B.J. Marsh, D. Hanein, N. Volkmann, Efficient automatic noise reduction of electron tomographic reconstructions based on iterative median filtering. J. Struct. Biol. 158(2), 196–204 (2007). doi:10.1016/j.jsb.2006.10.030

    Article  Google Scholar 

  53. W. Jiang, M.L. Baker, Q. Wu, C. Bajaj, W. Chiu, Applications of a bilateral denoising filter in biological electron microscopy. J. Struct. Biol. 144(1–2), 114–122 (2003)

    Article  Google Scholar 

  54. R.A. Ali, M.J. Landsberg, E. Knauth, G.P. Morgan, B.J. Marsh, B. Hankamer, A 3D image filter for parameter-free segmentation of macromolecular structures from electron tomograms. PLoS ONE 7(3), e33697 (2012). doi:10.1371/journal.pone.0033697

    Article  ADS  Google Scholar 

  55. J.R. Bilbao-Castro, C.O. Sorzano, I. Garcia, J.J. Fernandez, XMSF: structure-preserving noise reduction and pre-segmentation in microscope tomography. Bioinformatics 26(21), 2786–2787 (2010). doi:10.1093/bioinformatics/btq496

    Article  Google Scholar 

  56. D.Y. Wei, C.C. Yin, An optimized locally adaptive non-local means denoising filter for cryo-electron microscopy data. J. Struct. Biol. 172(3), 211–218 (2010). doi:10.1016/j.jsb.2010.06.021

    Article  Google Scholar 

  57. J.J. Fernandez, TOMOBFLOW: feature-preserving noise filtering for electron tomography. BMC Bioinform. 10, 178 (2009). doi:10.1186/1471-2105-10-178

    Article  Google Scholar 

  58. A.S. Frangakis, R. Hegerl, Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J. Struct. Biol. 135(3), 239–250 (2001)

    Article  Google Scholar 

  59. J.J. Fernandez, S. Li, An improved algorithm for anisotropic nonlinear diffusion for denoising cryo-tomograms. J. Struct. Biol. 144(1–2), 152–161 (2003)

    Article  Google Scholar 

  60. D.N. Mastronarde, Fiducial marker and hybrid alignment methods for single- and double-axis tomography, in Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell ed. by J. Frank. (Springer New York, 2006), pp. 163–185. doi:10.1007/978-0-387-69008-7_6

  61. C.V. Iancu, E.R. Wright, J. Benjamin, W.F. Tivol, D.P. Dias, G.E. Murphy, R.C. Morrison, J.B. Heymann, G.J. Jensen, A “flip-flop” rotation stage for routine dual-axis electron cryotomography. J. Struct. Biol. 151(3), 288–297 (2005)

    Article  Google Scholar 

  62. J. Tong, I. Arslan, P. Midgley, A novel dual-axis iterative algorithm for electron tomography. J. Struct. Biol. 153(1), 55–63 (2006). doi:10.1016/j.jsb.2005.10.005

    Article  Google Scholar 

  63. G.A. Zampighi, L. Zampighi, N. Fain, E.M. Wright, F. Cantele, S. Lanzavecchia, Conical tomography II: A method for the study of cellular organelles in thin sections. J. Struct. Biol. 151(3), 263–274 (2005). doi:10.1016/j.jsb.2005.05.008

    Article  Google Scholar 

  64. L. Kovacik, S. Kereiche, P. Matula, I. Raska, Sub-volume averaging of repetitive structural features in angularly filtered electron tomographic reconstructions. Folia Biol. (Praha) 60(Suppl 1), 66–70 (2014)

    Google Scholar 

  65. L. Kovacik, S. Kereiche, J.L. Hoog, P. Juda, P. Matula, I. Raska, A simple Fourier filter for suppression of the missing wedge ray artefacts in single-axis electron tomographic reconstructions. J. Struct. Biol. 186(1), 141–152 (2014). doi:10.1016/j.jsb.2014.02.004

    Article  Google Scholar 

  66. J.M. Carazo, J.L. Carrascosa, Restoration of direct Fourier three-dimensional reconstructions of crystalline specimens by the method of convex projections. J. Microsc. 145(Pt 2), 159–177 (1987)

    Google Scholar 

  67. Y. Deng, Y. Chen, Y. Zhang, S. Wang, F. Zhang, F. Sun, ICON: 3D reconstruction with ‘missing-information’ restoration in biological electron tomography. J. Struct. Biol. 195(1), 100–112 (2016). doi:10.1016/j.jsb.2016.04.004

    Article  Google Scholar 

  68. D.N. Mastronarde, Dual-axis tomography: an approach with alignment methods that preserve resolution. J. Struct. Biol. 120(3), 343–352 (1997). doi:10.1006/jsbi.1997.3919

    Article  Google Scholar 

  69. G. Cardone, K. Grunewald, A.C. Steven, A resolution criterion for electron tomography based on cross-validation. J. Struct. Biol. 151(2), 117–129 (2005)

    Article  Google Scholar 

  70. K. Grunewald, P. Desai, D.C. Winkler, J.B. Heymann, D.M. Belnap, W. Baumeister, A.C. Steven, Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302(5649), 1396–1398 (2003)

    Article  ADS  Google Scholar 

  71. Y. Chen, S. Pfeffer, J.J. Fernandez, C.O. Sorzano, F. Forster, Autofocused 3D classification of cryoelectron subtomograms. Structure (2014). doi:10.1016/j.str.2014.08.007

    Google Scholar 

  72. Y. Chen, S. Pfeffer, T. Hrabe, J.M. Schuller, F. Forster, Fast and accurate reference-free alignment of subtomograms. J. Struct. Biol. 182(3), 235–245 (2013). doi:10.1016/j.jsb.2013.03.002

    Article  Google Scholar 

  73. T. Hrabe, Y. Chen, S. Pfeffer, L.K. Cuellar, A.V. Mangold, F. Forster, PyTom: a python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J. Struct. Biol. 178(2), 177–188 (2012). doi:10.1016/j.jsb.2011.12.003

    Article  Google Scholar 

  74. J.T. Huiskonen, M.L. Parsy, S. Li, D. Bitto, M. Renner, T.A. Bowden, Averaging of viral envelope glycoprotein spikes from electron cryotomography reconstructions using Jsubtomo. J. Vis. Exp. 92, e51714 (2014). doi:10.3791/51714

    Google Scholar 

  75. L.M. Voortman, M. Vulovic, M. Maletta, A. Voigt, E.M. Franken, A. Simonetti, P.J. Peters, L.J. van Vliet, B. Rieger, Quantifying resolution limiting factors in subtomogram averaged cryo-electron tomography using simulations. J. Struct. Biol. 187(2), 103–111 (2014). doi:10.1016/j.jsb.2014.06.007

    Article  Google Scholar 

  76. J. Fontana, G. Cardone, J.B. Heymann, D.C. Winkler, A.C. Steven, Structural changes in Influenza virus at low pH characterized by cryo-electron tomography. J. Virol. 86(6), 2919–2929 (2012). doi:10.1128/JVI.06698-11

    Article  Google Scholar 

  77. J.G. Galaz-Montoya, J. Flanagan, M.F. Schmid, S.J. Ludtke, Single particle tomography in EMAN2. J. Struct. Biol. 190(3), 279–290 (2015). doi:10.1016/j.jsb.2015.04.016

    Article  Google Scholar 

  78. F.K. Schur, R.A. Dick, W.J. Hagen, V.M. Vogt, J.A. Briggs, The structure of immature virus-like Rous Sarcoma Virus Gag particles reveals a structural role for the p10 domain in assembly. J. Virol. 89(20), 10294–10302 (2015). doi:10.1128/JVI.01502-15

    Article  Google Scholar 

  79. F.K. Schur, W.J. Hagen, M. Rumlova, T. Ruml, B. Muller, H.G. Krausslich, J.A. Briggs, Structure of the immature HIV-1 capsid in intact virus particles at 8.8 A resolution. Nature 517(7535), 505–508 (2015). doi:10.1038/nature13838

  80. D. Nicastro, Cryo-electron microscope tomography to study axonemal organization. Methods Cell Biol. 91, 1–39 (2009). doi:10.1016/S0091-679X(08)91001-3

    Article  Google Scholar 

  81. U.E. Maurer, T. Zeev-Ben-Mordehai, A.P. Pandurangan, T.M. Cairns, B.P. Hannah, J.C. Whitbeck, R.J. Eisenberg, G.H. Cohen, M. Topf, J.T. Huiskonen, K. Grunewald, The structure of herpesvirus fusion glycoprotein B-bilayer complex reveals the protein-membrane and lateral protein-protein interaction. Structure 21(8), 1396–1405 (2013). doi:10.1016/j.str.2013.05.018

    Article  Google Scholar 

  82. J. Liu, A. Bartesaghi, M.J. Borgnia, G. Sapiro, S. Subramaniam, Molecular architecture of native HIV-1 gp120 trimers. Nature 455(7209), 109–113 (2008). doi:nature07159 [pii] 10.1038/nature07159

  83. T.A. Bharat, N.E. Davey, P. Ulbrich, J.D. Riches, A. de Marco, M. Rumlova, C. Sachse, T. Ruml, J.A. Briggs, Structure of the immature retroviral capsid at 8 A resolution by cryo-electron microscopy. Nature 487(7407), 385–389 (2012). doi:10.1038/nature11169

    Article  ADS  Google Scholar 

  84. T.A. Bharat, C.J. Russo, J. Lowe, L.A. Passmore, S.H. Scheres, Advances in single-particle electron cryomicroscopy structure determination applied to sub-tomogram averaging. Structure 23(9), 1743–1753 (2015). doi:10.1016/j.str.2015.06.026

    Article  Google Scholar 

  85. J. Lin, K. Okada, M. Raytchev, M.C. Smith, D. Nicastro, Structural mechanism of the dynein power stroke. Nat. Cell Biol. 16(5), 479–485 (2014). doi:10.1038/ncb2939

    Article  Google Scholar 

  86. J.B. Heymann, D.C. Winkler, Y.I. Yim, E. Eisenberg, L.E. Greene, A.C. Steven, Clathrin-coated vesicles from brain have small payloads: a cryo-electron tomographic study. J. Struct. Biol. 184(1), 43–51 (2013). doi:10.1016/j.jsb.2013.05.006

    Article  Google Scholar 

  87. W. van Aarle, W.J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K.J. Batenburg, J. Sijbers, The ASTRA toolbox: a platform for advanced algorithm development in electron tomography. Ultramicr 157, 35–47 (2015). doi:10.1016/j.ultramic.2015.05.002

    Article  Google Scholar 

  88. Q. Chu, K. Zhang, X. Wan, C. Zhang, Y. Zhang, G. Zhang, B. Shen, X. Lu, K. Zhao, X. Chu, F.F.S. Zhang, ATOM1.0 A GPU powered package for electron tomography reconstruction. Acta Biophys. Sin. 27(3), 231–241 (2011)

    Article  Google Scholar 

  89. Y. Chen, Y. Zhang, K. Zhang, Y. Deng, S. Wang, F. Zhang, F. Sun, FIRT: filtered iterative reconstruction technique with information restoration. J. Struct. Biol. 195(1), 49–61 (2016). doi:10.1016/j.jsb.2016.04.015

    Article  Google Scholar 

  90. D. Ress, M.L. Harlow, M. Schwarz, R.M. Marshall, U.J. McMahan, Automatic acquisition of fiducial markers and alignment of images in tilt series for electron tomography. J. Electron Microsc. 48(3), 277–287 (1999)

    Article  Google Scholar 

  91. T. Dahmen, L. Marsalek, N. Marniok, B. Turonova, S. Bogachev, P. Trampert, S. Nickels, P. Slusallek, The ettention software package. Ultramicr 161, 110–118 (2016). doi:10.1016/j.ultramic.2015.10.012

    Article  Google Scholar 

  92. H. Winkler, 3D reconstruction and processing of volumetric data in cryo-electron tomography. J. Struct. Biol. 157(1), 126–137 (2007)

    Article  Google Scholar 

  93. S. Nickell, F. Forster, A. Linaroudis, W.D. Net, F. Beck, R. Hegerl, W. Baumeister, J.M. Plitzko, TOM software toolbox: acquisition and analysis for electron tomography. J. Struct. Biol. 149(3), 227–234 (2005)

    Article  Google Scholar 

  94. J.I. Agulleiro, J.J. Fernandez, Fast tomographic reconstruction on multicore computers. Bioinformatics 27(4), 582–583 (2011). doi:10.1093/bioinformatics/btq692

    Article  Google Scholar 

  95. C. Messaoudii, T. Boudier, C.O. Sanchez Sorzano, S. Marco, TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinform. 8, 288 (2007). doi:10.1186/1471-2105-8-288

    Article  Google Scholar 

  96. S. Phan, A. Lawrence, T. Molina, J. Lanman, M. Berlanga, M. Terada, A. Kulungowski, J. Obayashi, M. Ellisman, TxBR montage reconstruction for large field electron tomography. J. Struct. Biol. 180(1), 154–164 (2012). doi:10.1016/j.jsb.2012.06.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bernard Heymann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernard Heymann, J. (2018). Tomographic Reconstruction from Electron Micrographs. In: Hanssen, E. (eds) Cellular Imaging. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-68997-5_8

Download citation

Publish with us

Policies and ethics