Advertisement

Electron Cryo-Tomography

Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Electron cryo-tomography is an integrative imaging technique that produces high-resolution 3-D images of cells and purified complexes. These images can uniquely provide mechanistic insights into in situ biology at molecular and cellular scales. To produce these images, specimens are preserved by flash-freezing without stains or fixatives; these flash-frozen specimens are imaged over a range of angles in an electron microscope and this data used to reconstruct 3-D images of the specimen in near-native state to ‘macromolecular’ resolution. In this introductory chapter we take the perspective of the workflow of a cryo-tomography project to outline the technique, and important underlying concepts.

Keywords

Electron cryo-microscopy Tomography Biological 

Notes

Acknowledgements

The authors would like to thank Bonnie Chaban, Peter Rosenthal, and Louie Henderson for insightful comments. This work has been supported by BBSRC grant BB/L023091/1 to MB.

Bibliography

  1. 1.
    C.M. Oikonomou, G.J. Jensen, A new view into prokaryotic cell biology from electron cryotomography. Nat. Rev. Microbiol. (2016) Google Scholar
  2. 2.
    L. Gan, G.J. Jensen, Electron tomography of cells. Q. Rev. Biophys. 45(01), 27–56 (2012)CrossRefGoogle Scholar
  3. 3.
    J.L.S. Milne, S. Subramaniam, Cryo-electron tomography of bacteria: progress, challenges and future prospects. Nat. Rev. Microbiol. 7(9), 666–675 (2009)CrossRefGoogle Scholar
  4. 4.
    V. Lučić, A. Rigort, W. Baumeister, Cryo-electron tomography: the challenge of doing structural biology in situ. J. Cell Biol. 202(3), 407–419 (2013)CrossRefGoogle Scholar
  5. 5.
    J.A.G. Briggs, Structural biology in situ–the potential of subtomogram averaging. Curr. Opin. Struct. Biol. 23(2), 261–267 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    W. Kühlbrandt, The resolution revolution. Science 343(6178), 1443–1444 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science. (Springer, 2009)Google Scholar
  8. 8.
    G. Rhodes, Crystallography made crystal clear a guide for users of macromolecular models (Elsevier/Academic Press, Amsterdam; Boston, 2006)Google Scholar
  9. 9.
    E. Hecht, Optics (Fourth edition, Pearson new international edition, 2014)Google Scholar
  10. 10.
    J.C. Russ, The image processing handbook, 6th edn. (CRC; London, Boca Raton, Fla, 2010)zbMATHGoogle Scholar
  11. 11.
    J. Dubochet, Cryo-EM—the first thirty years. J. Microsc. 245(3), 221–224 (2012)CrossRefGoogle Scholar
  12. 12.
    K. Dierksen, D. Typke, R. Hegerl, J. Walz, E. Sackmann, W. Baumeister, Three-dimensional structure of lipid vesicles embedded in vitreous ice and investigated by automated electron tomography. Biophys. J. 68(4), 1416–1422 (1995)CrossRefGoogle Scholar
  13. 13.
    R. Grimm, M. Bärmann, W. Häckl, D. Typke, E. Sackmann, W. Baumeister, Energy filtered electron tomography of ice-embedded actin and vesicles. Biophys. J. 72(1), 482–489 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    R. Grimm, H. Singh, R. Rachel, D. Typke, W. Zillig, W. Baumeister, Electron tomography of ice-embedded prokaryotic cells. Biophys. J. 74(2), 1031–1042 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    P.N.T. Unwin, P.D. Ennis, Two configurations of a channel-forming membrane protein. Nature 307(5952), 609–613 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    J. Dubochet, Aw McDowall, Vitrification of pure water for electron microscopy. J. Microsc. 124(3), 3–4 (1981)CrossRefGoogle Scholar
  17. 17.
    L. Gan, M.S. Ladinsky, G.J. Jensen, Organization of the smallest eukaryotic spindle. Curr. Biol. 21(18), 1578–1583 (2011)CrossRefGoogle Scholar
  18. 18.
    M.M. Farley, B. Hu, W. Margolin, J. Liu, Minicells, Back in Fashion. J. Bacteriol. JB. 00901–15 (2016)Google Scholar
  19. 19.
    E.I. Tocheva et al., Peptidoglycan transformations during Bacillus subtilis sporulation. Mol. Microbiol. 88(4), 673–686 (2013)CrossRefGoogle Scholar
  20. 20.
    T. Murray, D.L. Popham, P. Setlow, Bacillus subtilis cells lacking penicillin-binding protein 1 require increased levels of divalent cations for growth. J. Bacteriol. 180(17), 4555–4563 (1998)Google Scholar
  21. 21.
    M. Schaechter, O. Maaloe, N. Kjeldgaard, Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J. Gen. Microbiol. 19(3), 592–606 (1958)CrossRefGoogle Scholar
  22. 22.
    S. Chen et al., Structural diversity of bacterial flagellar motors. EMBO J. 30(14), 2972–2981 (2011)CrossRefGoogle Scholar
  23. 23.
    K.M. Davies et al., Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc. Natl. Acad. Sci. 108(34), 14121–14126 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    K.H. Bui et al., Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155(6), 1233–1243 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Briegel, et al., Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling. eLife 3, e02151 ( 2014)Google Scholar
  26. 26.
    C.J. Russo, L.A. Passmore, Ultrastable gold substrates: properties of a support for high-resolution electron cryomicroscopy of biological specimens. J. Struct. Biol. 193(1), 33–44 (2016)CrossRefGoogle Scholar
  27. 27.
    W.F. Tivol, A. Briegel, G.J. Jensen, An improved cryogen for plunge freezing. Microsc. Microanal. 14(05), 375–379 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    D. Studer, B.M. Humbel, M. Chiquet, Electron microscopy of high pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution. Histochem. Cell Biol. 130(5), 877–889 (2008)CrossRefGoogle Scholar
  29. 29.
    K.L. McDonald, M. Auer, High-pressure freezing, cellular tomography, and structural cell biology, BioTechniques, 41(2), 137, 139, 141 passim, (Aug. 2006)Google Scholar
  30. 30.
    M. Marko, C. Hsieh, W. Moberlychan, C.A. Mannella, J. Frank, Focused ion beam milling of vitreous water: prospects for an alternative to cryo-ultramicrotomy of frozen-hydrated biological samples. J. Microsc. 222(1), 42–47 (2006)MathSciNetCrossRefGoogle Scholar
  31. 31.
    E. Villa, M. Schaffer, J.M. Plitzko, W. Baumeister, Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Curr. Opin. Struct. Biol. 23(5), 771–777 (2013)CrossRefGoogle Scholar
  32. 32.
    J. Mahamid et al., Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351(6276), 969–972 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    L.G. Dowell, A.P. Rinfret, Low-temperature forms of ice as studied by X-Ray diffraction. Nature 188(4757), 1144–1148 (1960)ADSCrossRefGoogle Scholar
  34. 34.
    W.V. Nicholson, H. White, J. Trinick, An approach to automated acquisition of cryoEM images from lacey carbon grids. J. Struct. Biol. 172(3), 395–399 (2010)CrossRefGoogle Scholar
  35. 35.
    M. Beeby, D.A. Ribardo, C.A. Brennan, E.G. Ruby, G.J. Jensen, D.R. Hendrixson, Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc. Natl. Acad. Sci. 113(13), E1917–E1926 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    C.V. Iancu, E.R. Wright, J.B. Heymann, G.J. Jensen, A comparison of liquid nitrogen and liquid helium as cryogens for electron cryotomography. J. Struct. Biol. 153(3), 231–240 (2006)CrossRefGoogle Scholar
  37. 37.
    G. McMullan, S. Chen, R. Henderson, A.R. Faruqi, Detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy 109(9), 1126–1143 (2009)CrossRefGoogle Scholar
  38. 38.
    X. Li et al., Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM. Nat. Methods 10(6), 584–590 (2013)CrossRefGoogle Scholar
  39. 39.
    M. Kuijper et al., FEI’s direct electron detector developments: Embarking on a revolution in cryo-TEM. J. Struct. Biol. 192(2), 179–187 (2015)CrossRefGoogle Scholar
  40. 40.
    Danev, R., Nagayama, K.: Chapter Fourteen—Phase Plates for Transmission Electron Microscopy, in Cryo-EM Part A Sample Preparation and Data Collection, vol. 481 (Academic Press, 2010), pp. 343–369Google Scholar
  41. 41.
    R. Danev, S. Kanamaru, M. Marko, K. Nagayama, Zernike phase contrast cryo-electron tomography. J. Struct. Biol. 171(2), 174–181 (2010)CrossRefGoogle Scholar
  42. 42.
    Y. Fukuda, U. Laugks, V. Lučić, W. Baumeister, R. Danev, Electron cryotomography of vitrified cells with a Volta phase plate. J. Struct. Biol. (2015)Google Scholar
  43. 43.
    R.C. Guerrero-Ferreira, E.R. Wright, Cryo-electron tomography of bacterial viruses. Virology 435(1), 179–186 (2013)CrossRefGoogle Scholar
  44. 44.
    W. Dai et al., Visualizing virus assembly intermediates inside marine cyanobacteria. Nature 502(7473), 707–710 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    D.N. Mastronarde, Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152(1), 36–51 (2005)CrossRefGoogle Scholar
  46. 46.
    Q.S. Zheng, M.B. Braunfeld, J.W. Sedat, D.A. Agard, An improved strategy for automated electron microscopic tomography. J. Struct. Biol. 147(2), 91–101 (2004)CrossRefGoogle Scholar
  47. 47.
    C. Suloway et al., Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151(1), 41–60 (2005)CrossRefGoogle Scholar
  48. 48.
    G.C. Lander et al., Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166(1), 95–102 (2009)CrossRefGoogle Scholar
  49. 49.
    C. Suloway et al., Fully automated, sequential tilt-series acquisition with Leginon. J. Struct. Biol. 167(1), 11–18 (2009)CrossRefGoogle Scholar
  50. 50.
    R. Henderson, The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28(2), 171–193 (1995)CrossRefGoogle Scholar
  51. 51.
    T.A.M. Bharat, C.J. Russo, J. Löwe, L.A. Passmore, S.H.W. Scheres, Advances in single-particle electron cryomicroscopy structure determination applied to sub-tomogram averaging. Structure 23(9), 1743–1753 (2015)CrossRefGoogle Scholar
  52. 52.
    F.K.M. Schur, W.J.H. Hagen, A. de Marco, J.A.G. Briggs, Determination of protein structure at 8.5 Å resolution using cryo-electron tomography and sub-tomogram averaging. J. Struct. Biol. 184(3), 394–400 (2013)CrossRefGoogle Scholar
  53. 53.
    A. Bartesaghi, F. Lecumberry, G. Sapiro, S. Subramaniam, Protein secondary structure determination by constrained single-particle cryo-electron tomography. Structure 20(12), 2003–2013 (2012)CrossRefGoogle Scholar
  54. 54.
    B. Hu, et al.: Visualization of the type III secretion sorting platform of Shigella flexneri. Proc. Natl. Acad. Sci. 201411610 (2015)Google Scholar
  55. 55.
    D. Stokes, G. Owen, An introduction to low dose electron tomography—from specimen preparation to data collection. Mod. Res. Educ. Top. Microsc 939–950 (2007)Google Scholar
  56. 56.
    R. Erni, Abberation-corrected Imaging in Transmission Electron Microscopy: An introduction. World Scientific (2010)Google Scholar
  57. 57.
    G.E. Murphy, G.J. Jensen, Electron cryotomography. BioTechniques, 43(4), 413, 415, 417 passim, (2007)Google Scholar
  58. 58.
    C.V. Iancu et al., A ‘flip-flop’ rotation stage for routine dual-axis electron cryotomography. J. Struct. Biol. 151(3), 288–297 (2005)CrossRefGoogle Scholar
  59. 59.
    V. Lucić, F. Förster, W. Baumeister, Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74, 833–865 (2005)CrossRefGoogle Scholar
  60. 60.
    R.A. Crowther, D.J. DeRosier, A. Klug, The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 317(1530), 319–340 (1970)ADSCrossRefGoogle Scholar
  61. 61.
    W.O. Saxton, W. Baumeister, M. Hahn, Three-dimensional reconstruction of imperfect two-dimensional crystals. Ultramicroscopy 13(1–2), 57–70 (1984)CrossRefGoogle Scholar
  62. 62.
    W.J.H. Hagen, W. Wan, J.A.G. Briggs, Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 197(2), 191–198 (2017)CrossRefGoogle Scholar
  63. 63.
    W. Wan, J.A.G. Briggs, Chapter thirteen—cryo-electron tomography and subtomogram averaging, in Methods in Enzymology, vol. 579, ed. by R.A. Crowther (Academic Press, 2016), pp. 329–367Google Scholar
  64. 64.
    M. Kudryashev, H. Stahlberg, D. Castaño-Díez, Assessing the benefits of focal pair cryo-electron tomography. J. Struct. Biol. (2011)Google Scholar
  65. 65.
    R.D. Leapman, Novel techniques in electron microscopy. Curr. Opin. Neurobiol. 14(5), 591–598 (2004)CrossRefGoogle Scholar
  66. 66.
    J. Kremer, D. Mastronarde, J. McIntosh, Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116(1), 71–76 (1996)CrossRefGoogle Scholar
  67. 67.
    H. Winkler, K.A. Taylor, Marker-free dual-axis tilt series alignment. J. Struct. Biol. 182(2), 117–124 (2013)CrossRefGoogle Scholar
  68. 68.
    T.R. Shaikh et al., SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat. Protoc. 3(12), 1941–1974 (2008)CrossRefGoogle Scholar
  69. 69.
    S. Nickell et al., TOM software toolbox: acquisition and analysis for electron tomography. J. Struct. Biol. 149(3), 227–234 (2005)CrossRefGoogle Scholar
  70. 70.
    C. MessaoudiI, T. Boudier, C.O.S. Sorzano, S. Marco, TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinformatics 8, 288 (2007)CrossRefGoogle Scholar
  71. 71.
    F. Amat, F. Moussavi, L.R. Comolli, G. Elidan, K.H. Downing, M. Horowitz, Markov random field based automatic image alignment for electron tomography. J. Struct. Biol. 161(3), 260–275 (2008)CrossRefGoogle Scholar
  72. 72.
    J.I. Agulleiro, J.J. Fernandez, Fast tomographic reconstruction on multicore computers. Bioinforma. Oxf. Engl. 27(4), 582–583 (2011)CrossRefGoogle Scholar
  73. 73.
    J.J. Fernández, S. Li, R.A. Crowther, CTF determination and correction in electron cryotomography. Ultramicroscopy 106(7), 587–596 (2006)CrossRefGoogle Scholar
  74. 74.
    J.-J. Fernández, S. Li, An improved algorithm for anisotropic nonlinear diffusion for denoising cryo-tomograms. J. Struct. Biol. 144(1–2), 152–161 (2003)CrossRefGoogle Scholar
  75. 75.
    C.O.S. Sorzano et al., Marker-free image registration of electron tomography tilt-series. BMC Bioinformatics 10, 124 (2009)CrossRefGoogle Scholar
  76. 76.
    D. Castaño-Díez, M. Scheffer, A. Al-Amoudi, A.S. Frangakis, Alignator: a GPU powered software package for robust fiducial-less alignment of cryo tilt-series. J. Struct. Biol. 170(1), 117–126 (2010)CrossRefGoogle Scholar
  77. 77.
    J.-J. Fernandez et al., Removing contamination-induced reconstruction artifacts from cryo-electron tomograms. Biophys. J. 110(4), 850–859 (2016)ADSCrossRefGoogle Scholar
  78. 78.
    K. Song, L.R. Comolli, M. Horowitz, Removing high contrast artifacts via digital inpainting in cryo-electron tomography: an application of compressed sensing. J. Struct. Biol. 178(2), 108–120 (2012)CrossRefGoogle Scholar
  79. 79.
    T. Grant, N. Grigorieff, Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife e06980 (2015)Google Scholar
  80. 80.
    C.A. Diebolder, F.G.A. Faas, A.J. Koster, R.I. Koning, Conical Fourier shell correlation applied to electron tomograms. J. Struct. Biol. 190(2), 215–223 (2015)CrossRefGoogle Scholar
  81. 81.
    J.-J. Fernandez, Computational methods for electron tomography. Micron 43(10), 1010–1030 (2012)CrossRefGoogle Scholar
  82. 82.
    P. van der Heide, X.-P. Xu, B.J. Marsh, D. Hanein, N. Volkmann, Efficient automatic noise reduction of electron tomographic reconstructions based on iterative median filtering. J. Struct. Biol. 158(2), 196–204 (2007)CrossRefGoogle Scholar
  83. 83.
    A.S. Frangakis, R. Hegerl, Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J. Struct. Biol. 135(3), 239–250 (2001)CrossRefGoogle Scholar
  84. 84.
    R. Narasimha et al., Evaluation of denoising algorithms for biological electron tomography. J. Struct. Biol. 164(1), 7–17 (2008)CrossRefGoogle Scholar
  85. 85.
    G. Cardone, K. Grünewald, A.C. Steven, A resolution criterion for electron tomography based on cross-validation. J. Struct. Biol. 151(2), 117–129 (2005)CrossRefGoogle Scholar
  86. 86.
    P.A. Penczek, Chapter Three—Resolution Measures in Molecular Electron Microscopy, in Cryo-EM, Part B: 3-D Reconstruction, vol. 482 (Academic Press, 2010), pp. 73–100Google Scholar
  87. 87.
    D. Castaño-Díez, M. Kudryashev, M. Arheit, H. Stahlberg, Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J. Struct. Biol. 178(2), 139–151 (2012)CrossRefGoogle Scholar
  88. 88.
    D. Nicastro, C. Schwartz, J. Pierson, R. Gaudette, M.E. Porter, J.R. McIntosh, The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313(5789), 944–948 (2006)ADSCrossRefGoogle Scholar
  89. 89.
    S.H.W. Scheres, S. Chen, Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9(9), 853–854 (2012)CrossRefGoogle Scholar
  90. 90.
    F. Förster, B.-G. Han, and M. Beck, “Chapter Eleven—Visual Proteomics, in Cryo-EM, Part C: Analyses, Interpretation, and Case studies, vol. 483, (Academic Press, 2010), pp. 215–243Google Scholar
  91. 91.
    Z. Li, M. Trimble, Y. Brun, G. Jensen, The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J. 26, 4694–4708 (2007)CrossRefGoogle Scholar
  92. 92.
    Y.-W. Chang, et al., Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat. Methods, vol. advance online publication, (2014)Google Scholar
  93. 93.
    Q. Wang, C.P. Mercogliano, J. Löwe, A ferritin-based label for cellular electron cryotomography. Struct. Lond. Engl. 1993 19(2), 147–154 (2011)Google Scholar
  94. 94.
    M. Beeby, structural diversity of bacterial flagellar motors. Presented at the MicroMorning, Caltech, (14-Jul-2011)Google Scholar
  95. 95.
    P. Abrusci et al., Architecture of the major component of the type III secretion system export apparatus. Nat. Struct. Mol. Biol. 20(1), 99–104 (2013)MathSciNetCrossRefGoogle Scholar
  96. 96.
    K. Song et al., In situ localization of N and C termini of subunits of the flagellar nexin-dynein regulatory complex (N-DRC) using SNAP tag and cryo-electron tomography. J. Biol. Chem. 290(9), 5341–5353 (2015)CrossRefGoogle Scholar
  97. 97.
    S. Velankar et al., PDBe: improved accessibility of macromolecular structure data from PDB and EMDB. Nucleic Acids Res. 44(D1), D385–D395 (2016)CrossRefGoogle Scholar
  98. 98.
    A. Iudin, P.K. Korir, J. Salavert-Torres, G.J. Kleywegt, A. Patwardhan, EMPIAR: a public archive for raw electron microscopy image data. Nat. Methods 13(5), 387–388 (2016)CrossRefGoogle Scholar
  99. 99.
    A. Nans, H.R. Saibil, R.D. Hayward, Pathogen-host reorganisation during Chlamydia invasion revealed by cryo-electron tomography. Cell. Microbiol. p. n/a-n/a, (2014)Google Scholar
  100. 100.
    A. Kawamoto et al., Common and distinct structural features of Salmonella injectisome and flagellar basal body. Sci. Rep. 3, 3369 (2013)CrossRefGoogle Scholar
  101. 101.
    S. Asano et al., A molecular census of 26S proteasomes in intact neurons. Science 347(6220), 439–442 (2015)ADSCrossRefGoogle Scholar
  102. 102.
    B.D. Engel, M. Schaffer, S. Albert, S. Asano, J.M. Plitzko, W. Baumeister, In situ structural analysis of Golgi intracisternal protein arrays. Proc. Natl. Acad. Sci. 112(36), 11264–11269 (2015)ADSCrossRefGoogle Scholar
  103. 103.
    C. Hagen et al., Structural basis of vesicle formation at the inner nuclear membrane. Cell 163(7), 1692–1701 (2015)CrossRefGoogle Scholar
  104. 104.
    T.A.M. Bharat et al., Cryo-electron tomography of Marburg virus particles and their morphogenesis within infected cells. PLoS Biol. 9(11), e1001196 (2011)CrossRefGoogle Scholar
  105. 105.
    F.K.M. Schur, R.A. Dick, W.J.H. Hagen, V.M. Vogt, J.A.G. Briggs, The structure of immature virus-like rous sarcoma virus gag particles reveals a structural role for the p10 domain in assembly. J. Virol. 89(20), 10294–10302 (2015)CrossRefGoogle Scholar
  106. 106.
    W. Dai, C. Fu, H.A. Khant, S.J. Ludtke, M.F. Schmid, W. Chiu, Zernike phase-contrast electron cryotomography applied to marine cyanobacteria infected with cyanophages. Nat. Protoc. 9(11), 2630–2642 (2014)CrossRefGoogle Scholar
  107. 107.
    L. Gan, S. Chen, G.J. Jensen, Molecular organization of Gram-negative peptidoglycan. Proc. Natl. Acad. Sci. 105(48), 18953–18957 (2008)ADSCrossRefGoogle Scholar
  108. 108.
    M. Beeby, J.C. Gumbart, B. Roux, G.J. Jensen, Architecture and assembly of the Gram-positive cell wall. Mol. Microbiol. 44(4), 664–672 (2013)CrossRefGoogle Scholar
  109. 109.
    E.I. Tocheva, E.G. Matson, D.M. Morris, F. Moussavi, J.R. Leadbetter, G.J. Jensen, Peptidoglycan remodeling and conversion of an inner membrane into an outer membrane during sporulation. Cell 146(5), 799–812 (2011)CrossRefGoogle Scholar
  110. 110.
    K.C. Huang, R. Mukhopadhyay, B. Wen, Z. Gitai, N.S. Wingreen, Cell shape and cell-wall organization in Gram-negative bacteria. Proc. Natl. Acad. Sci., p. pnas.0805309105 (2008)Google Scholar
  111. 111.
    L.T. Nguyen, J.C. Gumbart, M. Beeby, G.J. Jensen, Coarse-grained simulations of bacterial cell wall growth reveal that local coordination alone can be sufficient to maintain rod shape. Proc. Natl. Acad. Sci. 112(28), E3689–E3698 (2015)ADSCrossRefGoogle Scholar
  112. 112.
    M. Pilhofer, G.J. Jensen, The bacterial cytoskeleton: more than twisted filaments. Curr. Opin. Cell BiolGoogle Scholar
  113. 113.
    J. Salje, F. van den Ent, P. de Boer, J. Löwe, Direct membrane binding by bacterial actin MreB. Mol. Cell 43(3), 478–487 (2011)CrossRefGoogle Scholar
  114. 114.
    F. van den Ent, T. Izoré, T.A. Bharat, C.M. Johnson, J. Löwe, Bacterial actin MreB forms antiparallel double filaments. eLife 3, e02634, (2014)Google Scholar
  115. 115.
    E.C. Garner, R. Bernard, W. Wang, X. Zhuang, D. Z. Rudner, T. Mitchison, Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science (2011)Google Scholar
  116. 116.
    J. Domínguez-Escobar, A. Chastanet, A.H. Crevenna, V. Fromion, R. Wedlich-Söldner, R. Carballido-López, Processive movement of MreB-associated cell wall biosynthetic complexes in Bacteria. Science 333(6039), 225–228 (2011)ADSCrossRefGoogle Scholar
  117. 117.
    S. van Teeffelen et al., The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl. Acad. Sci. 108(38), 15822–15827 (2011)ADSCrossRefGoogle Scholar
  118. 118.
    P. Szwedziak, Q. Wang, T.A.M. Bharat, M. Tsim, J. Löwe, Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division. eLife 3, e04601 (2014)Google Scholar
  119. 119.
    A. Briegel, D. Dias, Z. Li, R. Jensen, A. Frangakis, G. Jensen, Multiple large filament bundles observed in Caulobacter crescentus by electron cryotomography. Mol. Microbiol. 62, 5–14 (2006)CrossRefGoogle Scholar
  120. 120.
    M. Ingerson-Mahar, A. Briegel, J.N. Werner, G.J. Jensen, Z. Gitai, The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nat. Cell Biol. 12(8), 739–746 (2010)CrossRefGoogle Scholar
  121. 121.
    M. Beck, V. Lučić, F. Förster, W. Baumeister, O. Medalia, Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449(7162), 611–615 (2007)ADSCrossRefGoogle Scholar
  122. 122.
    J. Kosinski et al., Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science 352(6283), 363–365 (2016)ADSCrossRefGoogle Scholar
  123. 123.
    A. Rigort et al., Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc. Natl. Acad. Sci. 109(12), 4449–4454 (2012)ADSCrossRefGoogle Scholar
  124. 124.
    M. Eibauer, M. Pellanda, Y. Turgay, A. Dubrovsky, A. Wild, O. Medalia, Structure and gating of the nuclear pore complex. Nat. Commun. 6, 7532 (2015)ADSCrossRefGoogle Scholar
  125. 125.
    M. Zwerger, M. Eibauer, O. Medalia, Insights into the gate of the nuclear pore complex. Nucl. Austin Tex 7(1), 1–7 (2016)Google Scholar
  126. 126.
    A. von Appen et al., In situ structural analysis of the human nuclear pore complex. Nature 526(7571), 140–143 (2015)ADSCrossRefGoogle Scholar
  127. 127.
    J.A. Berriman, P.B. Rosenthal, Paraxial charge compensator for electron cryomicroscopy. Ultramicroscopy 116, 106–114 (2012)CrossRefGoogle Scholar
  128. 128.
    C.J. Russo, L.A. Passmore, Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas. Nat. Methods 11(6), 649–652 (2014)CrossRefGoogle Scholar
  129. 129.
    R.S. Pantelic, J.C. Meyer, U. Kaiser, W. Baumeister, J.M. Plitzko, Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. J. Struct. Biol. 170(1), 152–156 (2010)CrossRefGoogle Scholar
  130. 130.
    T. Jain, SpotItOn: a new approach to EM specimen preparation. Presented at the NRAMM, Scripps, San Diego, California, USA (11-Dec-2012)Google Scholar
  131. 131.
    A. Müller, M. Beeby, A.W. McDowall, J. Chow, G. J. Jensen, W.M. Clemons, Ultrastructure and complex polar architecture of the human pathogen Campylobacter jejuni. MicrobiologyOpen, p. n/a-n/a, (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Life SciencesImperial College LondonLondonUK

Personalised recommendations