Skip to main content

Non-BASF Ammonia Technologies

  • Chapter
  • First Online:
Nitrogen Capture

Abstract

On 24 January 1927, Nikodem Caro, co-inventor with Adolph Frank of the calcium cyanamide process for the capture of atmospheric nitrogen, lectured in Berlin on the nitrogen industry. He was particularly scathing of those countries that, he claimed, after World War I used “chemists and engineers in uniform” and “stolen” Haber-Bosch synthetic ammonia patents to develop nitrogen capture industries outside Germany. He could give credit only to Georges Claude in France and Luigi Casale in Italy for original innovations in ammonia synthesis. The great proliferation of nitrogen factories, he remarked, “makes one think and raises questions” about those countries that had without doubt stolen the ammonia industry to satisfy their strategic ambitions: “And now one understands that in most cases these new factories do not spring from economic but from political necessity, the strategic need for independence in nitrogen requirements in agriculture and for production of munitions” [1]. This resonated with Humphrey’s scenario in July 1923, in which he foresaw the spread of nitrogen factories outside Germany’s borders unless BASF maintained its monopoly on synthetic ammonia. But in 1927, with new processes available, the situation was very different. Nevertheless the strategy of controlling synthetic nitrogen technologies approached the kind of oversight reserved for industries serving the military.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Change history

  • 13 March 2019

    The original version of the book was inadvertently published with incorrect information. These changes have now been corrected and approved by the author.

Notes

  1. 1.

    Casale, British patent, GB 148,885-A, filed 30 June 1921.

  2. 2.

    Casale, British patent, GB 194,740-A, filed 19 September 1921.

  3. 3.

    Casale, Canadian patent, CA 230,616, filed 1 May 1923. See also Casale British patent, GB 193,789, 24 August 1922; addition to GB 185,179.

  4. 4.

    Around 1930, Fauser invented a process for the oxidation of ammonia into liquid nitrogen tetroxide, which was then converted into concentrated nitric acid, suited to the manufacture of explosives. This was developed by Bamag-Meguin and used in many countries.

Abbreviations

ASED:

SA Ammoniaque Synthétique et Dérivés. (Montecatini-Fauser)

Azogeno:

Società per la Fabbricazione dell’Ammoniaca Sintetica e Prodotti Derivati. (Claude)

Carburo:

Società Italiana del Carburo di Calcio, Acetilene e altri Gas (Roma). In 1922, taken over by SAFFAT, at which time the Terni company was established.

DSM:

Dutch State Mines (Nederlandse Staatsmijnen).

Montecatini:

Montecatini Mining and Agriculture Company (Società Generale per l’Industria Mineraria e Agricola Montecatini). (Fauser)

Pechiney:

Cie d’Alais, Froges et Camargue.

SAFFAT:

Società degli Alti Forni Fonderie e Acciaiere di Terni. Also: Società Alti Forni Fonderie & Acciaiere; Società degli Alti Forni e Fonderie di Terni.

SIAS:

Società Italiana Ammoniaca Sintetica-Processo Casale.

SIPA:

Società Italiana per la Fabbricazione di Prodotti Azotati e di altri sostanze per l’Agricoltura. Also: Società Italiana Prodotti Azotati. (Montecatini)

SIRI:

Società Italiana Ricerche Industriali. (Casale)

Terni:

Terni-Società per Indùstria e l’Elettricità. Also: Società per l’Industrie e l’Elettricità ‘Terni’. (Casale)

References

  1. Caro N (1927) Glossen zur Stickstoff-Industrie. Die chemische Industrie 50(6)(12 February):181–185.

    Google Scholar 

  2. van Rooij A (2005) Engineering contractors in the chemical industry: the development of ammonia processes, 1910–1940. Hist and Technol 21(4):345–366.

    Google Scholar 

  3. Waeser B (1932) Die Luftstickstoff-Industrie. Mit Berücksichtigung der chilenischen Industrie und des Kokereistickstoffs. Springer, Berlin.

    Google Scholar 

  4. Tongue H (1934) The design and construction of high pressure chemical plant. Chapman & Hall, London, pp 116–119, 340–353 (for Claude), 120–122, 353–359 (for Casale).

    Google Scholar 

  5. Travis AS (1998) High pressure industrial chemistry: the first steps, 1909–1913, and the impact. In: Travis AS, Schröter HG, Homburg E, Morris PJT (eds), Determinants in the evolution of the European chemical industry, 1900–1939: new technologies, political frameworks, markets and companies. Kluwer, Dordrecht, pp 3–21.

    Google Scholar 

  6. Kauffman GB (1970) Arturo Miolati (1869–1956). Isis 61(2):241–253.

    Google Scholar 

  7. Cariati V, Cavallone S, Maraini E, Zamagni V (eds) (2013) Storia delle società Italiane di ingegneria e impiantistica. il Mulino, Bologna, pp 55ff.

    Google Scholar 

  8. Crowley JF (1927) Dr Luigi Casale. J Soc Chem Ind 46(10)(11 March):220–221 (Chem Ind London).

    Google Scholar 

  9. Ceccarelli M (2014) Lorenzo Allievi (1856–1941). In: Ceccarelli M (ed), Distinguished figures in mechanism and machine science: their contributions and legacies. History of mechanism and machine science, vol. 26, part 3. Springer, Dordrecht, pp 1–17, on 2.

    Google Scholar 

  10. Casale, Italian patent, filed 18 July 1917; Casale, French patent, FP 495,725, filed 19 October 1917.

    Google Scholar 

  11. Casale, Italian patent, filed 21 September 1920; Casale, French patent, FP 527,818, filed 1 December 1921.

    Google Scholar 

  12. Miolati A (1927) Synthetic ammonia and the Casale process. Amplified edition of a lecture delivered the 27th February 1927 at the Institute of Chemistry of the Polytechnic School of Prague. Ammonia Casale SA, Rome.

    Google Scholar 

  13. Trinchieri G (2001) Le industrie chimiche in Italia, dalle origini al 2000. Arvan, Venice, pp 149–163, 204–213.

    Google Scholar 

  14. Miolati A (1927) Synthetic ammonia and the Casale process. Amplified edition of a lecture delivered the 27th February 1927 at the Institute of Chemistry of the Polytechnic School of Prague. Ammonia Casale SA, Rome, pp 9–10.

    Google Scholar 

  15. Miolati A (1927) Synthetic ammonia and the Casale process. Amplified edition of a lecture delivered the 27th February 1927 at the Institute of Chemistry of the Polytechnic School of Prague. Ammonia Casale SA, Rome, pp 16–17.

    Google Scholar 

  16. Miolati A (1927) Synthetic ammonia and the Casale process. Amplified edition of a lecture delivered the 27th February 1927 at the Institute of Chemistry of the Polytechnic School of Prague. Ammonia Casale SA, Rome, pp 20, 21.

    Google Scholar 

  17. Tongue H (1934) The design and construction of high pressure chemical plant. Chapman & Hall, London, p 83.

    Google Scholar 

  18. Fauser, Italian patent 198,374, filed 23 April 1921; 198,936 (water gas).

    Google Scholar 

  19. Scaglione P (2000) Il contributo di Giacomo Fauser e dei centri di recerca di Novara alla nascita ed allo sviluppo dell’Industria Chimica Italiana. De Agostani, Novara.

    Google Scholar 

  20. Perugini M (2014) Il farsi di una grande impresa. La Montecatini fra le due guerre mondiali. FrancoAngeli, Milan, pp 24–25.

    Google Scholar 

  21. Perugini M (2014) Il farsi di una grande impresa. La Montecatini fra le due guerre mondiali. FrancoAngeli, Milan, p 138.

    Google Scholar 

  22. Visintin M (2004) La grande industria in Alto Adige tra le due guerre mondiali. Fondazione Museo Storico Trentino, Trento.

    Google Scholar 

  23. Synthetic ammonia in Italy (1924) J Soc Chem Ind 43(52)(26 December):1283 (Chem Ind London).

    Google Scholar 

  24. van Rooij A, Homburg E (2002) Building the plant: a history of engineering contracting in the Netherlands. Walburg Pers, Eindhoven, pp 40–41.

    Google Scholar 

  25. Achilladelis BG (1973) Process innovation in the chemical industry. PhD thesis, University of Sussex, pp 148–153, on 151.

    Google Scholar 

  26. Knowles hydrogen plant at the Warfield works of the Consolidated Mining & Smelting Co. of Canada Ltd (1932) J Soc Chem Ind 51(17)(22 April):355–358 (Chem Ind London).

    Google Scholar 

  27. Miolati A (1927) Synthetic ammonia and the Casale process. Amplified edition of a lecture delivered the 27th February 1927 at the Institute of Chemistry of the Polytechnic School of Prague. Ammonia Casale SA, Rome, p 20.

    Google Scholar 

  28. Fabi L (ed) (2003) La SIRI: la fabbrica della ricerca. Luigi Casale e l’ammoniaca sintetica a Terni (catalogue of exhibition, 21 November 2003 to 21 May 2004). Centro di Documentazione sul Patrimonio Industriale. Antenna Pressa, Terni.

    Google Scholar 

  29. Waeser B (1932) Die Luftstickstoff-Industrie. Mit Berücksichtigung der chilenischen Industrie und des Kokereistickstoffs. Springer, Berlin, pp 140–141.

    Google Scholar 

  30. Crowley JF (1927) Dr Luigi Casale. J Soc Chem Ind 46(10)(11 March):220–221 (Chem Ind London).

    Google Scholar 

  31. Bertrams K (2013) The years of crisis (1914–1950): The making and unmaking of international alliances. In: Bertrams K, Homburg E, Coupain N, Solvay: the history of a multinational family firm. Cambridge University Press, Cambridge/New York, pp 151–329, on 204–206.

    Google Scholar 

  32. Baud P (1933) La grande industrie chimique française. Sa distribution et son état actuel. Annales de Geographie 42(236):127–141, on 139–141.

    Google Scholar 

  33. Miolati A (1927) Synthetic ammonia and the Casale process. Amplified edition of a lecture delivered the 27th February 1927 at the Institute of Chemistry of the Polytechnic School of Prague. Ammonia Casale SA, Rome.

    Google Scholar 

  34. The Casale ammonia process (1925) J Soc Chem Ind 44(47)(20 November):1154.

    Google Scholar 

  35. Isella D (ed) (1982) Carteggio dell’ing. Carlo Emilio Gadda con l’ ‘Ammonia Casale S.A.’ 1927–1940. Stamperia Valdonega, Verona.

    Google Scholar 

  36. Appell MP (1918) Excerpts from RAPPORT DE M. P. Appell sur les titres et travaux de M. Georges Claude, candidat à la division des applications de la science à l’industrie, lu le 12 novembre 1918 (en comité secret).

    Google Scholar 

  37. Notices sur les travaux scientifiques et industriels de M. Georges Claude (1913–1924) (1924). Corbeil, Crété.

    Google Scholar 

  38. Thompson HL, Guillaumeron P, Updegraff NC (1952). Ammonia synthesis at 1000 atmospheres: the present-day Claude process. Chem Eng Progress 48(9)(September):468–476.

    Google Scholar 

  39. Sensicle LH (1927) The future of high-temperature carbonization. J Soc Chem Ind 46(2)(14 January):1T–20T, on 13T–14T.

    Google Scholar 

  40. West JH (1921) The Claude synthetic-ammonia process and plant. J Soc Chem Ind 40(22)(November):420R–424R.

    Google Scholar 

  41. Synthetic ammonia in Italy (1925) J Soc Chem Ind 44(23)(5 June):584–585 (Chem Ind London).

    Google Scholar 

  42. Benegiamo M (2013) Bussi e la grande chimica in Abruzzo. Un’ambizione fallita. Textus Edizioni, L’Aquila, pp 227–229.

    Google Scholar 

  43. London letter (1924) Ind Eng Chem 16(4)(April):427.

    Google Scholar 

  44. Meinzer L (1998) ‘Productive collateral’ or ‘economic sense?’ BASF under French occupation, 1919–1923. In: Travis AS, Schröter HG, Homburg E, Morris PJT (eds), Determinants in the evolution of the European chemical industry, 1900–1939: new technologies, political frameworks, markets and companies. Kluwer, Dordrecht, pp 51–63, on 54–55.

    Google Scholar 

  45. MacLeod R, Johnson JA (2006) The war the victors lost: the dilemmas of chemical disarmament, 1919–1926. In: MacLeod R, Johnson JA (eds), Frontline and factory: comparative perspectives on the chemical industry at war, 1914–1924. Springer, Dordrecht, pp 221–245, on 233–234.

    Google Scholar 

  46. Franco-German synthetic-ammonia convention (1920) J Soc Chem Ind 39(17)(15 September):305R.

    Google Scholar 

  47. Bertrams K (2013) The years of crisis (1914–1950): The making and unmaking of international alliances. In: Bertrams K, Homburg E, Coupain N, Solvay: the history of a multinational family firm. Cambridge University Press, Cambridge/New York, pp 151–329.

    Google Scholar 

  48. Curtis HA, Ernst FA (1924) United States Department of Agriculture. Supplement. Commerce Reports. Nitrogen survey. Part IV. September 29, 1924. The nitrogen situation in European countries. Trade Information Bulletin. United States Department of Agriculture, Washington DC, pp 19–21.

    Google Scholar 

  49. Editorial (1923) J Soc Chem Ind 42(7)(16 February):137–138 (Chem Ind London).

    Google Scholar 

  50. Deschiens M (1924) The position of the nitrogen industry in France. J Soc Chem Ind 43(20)(16 May):507–508 (Chem Ind London).

    Google Scholar 

  51. Achilladelis BG (1973) Process innovation in the chemical industry. PhD thesis, University of Sussex, pp 44–47.

    Google Scholar 

  52. Synthetic ammonia in France (1924) J Soc Chem Ind 43(47)(21 November):1163 (Chem Ind London).

    Google Scholar 

  53. Notes and news. France (1921) J Soc Chem Ind 40(10)(31 May):193R.

    Google Scholar 

  54. Waeser B (1926) The atmospheric nitrogen industry: with special consideration of the production of ammonia and nitric acid (trans. Fyleman E). P Blakiston’s Son & Co., Philadelphia, vol. I, quoting Harker, on p xx.

    Google Scholar 

  55. Crowley JF, Bergstrom EM (1924) The development of national water power resources. In: The transactions of the first World Power Conference, London, June 30th to July 12th, 1924, vol. I. Power resources of the world available and unutilised. Percy Lund Humphries & Co., Ltd, London, pp 44, 349–368, on 359–363.

    Google Scholar 

  56. Dinner to Dr Luigi Casale (1925) J Soc Chem Ind 44(19)(8 May):477–478 (Chem Ind London).

    Google Scholar 

  57. Waeser B (1932) Die Luftstickstoff-Industrie. Mit Berücksichtigung der chilenischen Industrie und des Kokereistickstoffs, Band I. Springer, Berlin, pp 49–50.

    Google Scholar 

  58. Homburg E, Small JS, Vincken PFG (2000) Van carbo- naar petrochemie, 1910–1940. In: Schot JW, et al. (eds), Techniek in Nederland in de twintigste eeuw, II. Walburg Pers, Zutphen, pp 332–357.

    Google Scholar 

  59. Homburg E, van Rooij A (2004) Die Vor- und Nachteile enger Nachbarschaft. Der Transfer deutscher chemischer Technologie in die Niederlande bis 1952. In: Petri R (ed), Technologietransfer aus der deutschen Chemieindustrie (1925–1960). Duncker & Humblot, Berlin, pp 183–226.

    Google Scholar 

  60. van Rooij A (2004) Building plants: markets for technology and internal capabilities in DSM’s fertiliser business, 1925–1970. Aksant, Amsterdam.

    Google Scholar 

  61. van Rooij A (2005) Why do firms acquire technology? The example of DSM’s ammonia plants, 1925–1970. Res Policy 34(6)(August):836–851.

    Google Scholar 

  62. Homburg E (2004) Groeien door Kunstmest. DSM Agro 1929–2004. Verloren, Hilversum.

    Google Scholar 

  63. Forbes RJ, O’Beirne DR (1957) The technical development of the Royal Dutch/Shell, 1890–1940. EJ Brill, Leiden, pp 503–510.

    Google Scholar 

  64. Stokes RG, Banken R (2016) Building on air: the international industrial gases industry, 1886–2006. Cambridge University Press, New York.

    Google Scholar 

  65. Brown CO (1933) High pressure synthesis: basis of new chemical engineering industries. In: Kirkpatrick SD (ed), Twenty-five years of chemical engineering progress. Silver anniversary volume. American Institute of Chemical Engineers. Published by the institute and for sale by D Van Nostrand Company, Inc., New York, pp 152–168, on 167.

    Google Scholar 

  66. Evans RM, Newton WL (1926) Hydrogen from water gas: catalysts for its production. Ind Eng Chem 18(5)(May):513–517.

    Google Scholar 

  67. Tongue H (1934) The design and construction of high pressure chemical plant. Chapman & Hall, London, pp 120–122, 353–356.

    Google Scholar 

  68. Pallemaerts FAF (1929) Synthetic ammonia plant at Ostend. Ind Eng Chem 21(1)(January):22–29.

    Google Scholar 

  69. Belgian chemical industry (1929) J Soc Chem Ind 48(51)(20 December):1234 (Chem Ind London).

    Google Scholar 

  70. Dyes WA (1929) Chemistry, agriculture and industry in Germany. J Soc Chem Ind 48(20)(17 May):507–510, on 508 (Chem Ind London).

    Google Scholar 

  71. Forbes RJ, O’Beirne DR (1957) The technical development of the Royal Dutch/Shell, 1890–1940. EJ Brill, Leiden, pp 512–519.

    Google Scholar 

  72. Industrial notes from abroad. U.S.S.R. (1937) J Soc Chem Ind 56(39)(25 September):867 (Chem Ind London).

    Google Scholar 

  73. Quaderni dell’ingegnere chimico italiano (1975) 11(10)(October):155–160.

    Google Scholar 

  74. High pressures in the manufacture of synthetic ammonia. Recent designs in compressing plant (1929) J Soc Chem Ind 48(24)(14 June):591–598 (Chem Ind London).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Travis, A.S. (2018). Non-BASF Ammonia Technologies. In: Nitrogen Capture. Springer, Cham. https://doi.org/10.1007/978-3-319-68963-0_10

Download citation

Publish with us

Policies and ethics