Advertisement

Mycoremediation: An Eco-friendly Approach for Degradation of Pesticides

  • Geeta Bhandari
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Pesticides are toxic and recalcitrant in nature and cause contamination in natural ecosystems and thereafter health problems in ultimate consumers. The residual effects of pesticides include carcinogenicity, mutagenicity, reproductive toxicity, and various other health problems. Currently there are a number of possible mechanisms for the cleanup of pesticides in soil, such as chemical treatment, volatilization, and incineration, but for both economic and ecological reasons, biological degradation has become an increasingly popular alternative for the treatment of pesticide residues in soil and water. Mycoremediation plays pivotal role in the treatment of various organic and inorganic pollutants. Fungi can easily colonize and utilize pesticides as nutrient source and degrade or fragment them into nontoxic simpler forms. Fungi are great biodegrades and the resultant compost has been used to enhance the growth of plants as well as bioremediation activity in the environment. A number of fungi (Pleurotus ostreatus, Rhizoctonia solani, Mucor, Aspergillus, Rhizopus arrhizus, Phanerochaete chrysosporium, Trametes hirsuta, Lentinus edodes, Trametes versicolor, Bjerkandera adusta, Lentinula edodes, Irpex lacteus, Agaricus bisporus, Pleurotus tuber-regium, Pleurotus pulmonarius, Trichoderma harzianum) have been reported till date involved in degradation of various pesticides.

Keywords

Pesticides Endosulfan Herbicides Insecticides DDT 

References

  1. Ahmed M, Ismail S, Mabrouk S (1998) Residues of some chlorinated hydrocarbon pesticides in rain water, soil and ground water, and their influence on some soil microorganisms. Environ Int 24:665–670CrossRefGoogle Scholar
  2. Amakiri MA (1982) Microbial degradation of soil applied herbicides. Nij J Microbiol 2:17–21Google Scholar
  3. Anderson JPE, Lichtenstein EP (1971) Effect of nutritional factors on DDT degradation by Mucor alternans. Can J Microbiol 17:1291–1298CrossRefPubMedGoogle Scholar
  4. Awasthi N, Manickam N, Kumar A (1997) Biodegradation of endosulfan by a bacterial co-culture. Bull Environ Contam Toxicol 59:928–934CrossRefPubMedGoogle Scholar
  5. Bastos AC, Magan N (2009) Trametes versicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int Biodeterior Biodegrad 63:389–394CrossRefGoogle Scholar
  6. Bending MP, Anderron A, Ander P, Stenström J, Torstensson L (2001) Establishment of white-rot fungus Phanerochaete chrysosporium on unsterile straw in solid substrate fermentation system intended for degradation of pesticides. World J Microbiol Biotechnol 17:627–633CrossRefGoogle Scholar
  7. Bending G, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63CrossRefPubMedGoogle Scholar
  8. Bhalerao TS (2012) Bioremediation of endosulfan-contaminated soil by using bioaugmentation treatment of fungal inoculant Aspergillus niger. Turk J Biol 36:561–567Google Scholar
  9. Bumpus JA, Aust SD (1987) Biodegradation of DDT (1,1,1-trichloro-2, 2-bis (4-chlorophenyl) ethane) by white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 53:2001–2008PubMedPubMedCentralGoogle Scholar
  10. Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 4706:1434–1436CrossRefGoogle Scholar
  11. Bumpus JA, Powers RH, Sun T (1993) Biodegradation of DDE (1,1-dichloro- 2,2-bis(4-chlorophenyl)ethene) by Phanerochaete chrysosporium. Mycol Res 97:85–98CrossRefGoogle Scholar
  12. Carvalho MB, Tavares S, Medeiros J, Núñez O, Gallart-Ayala H, Leitão MC, Galceran MT, Hursthouse A, Pereira CS (2011) Degradation pathway of pentachlorophenol by Mucor plumbeus involves phase II conjugation and oxidation-reduction reactions. J Hazard Mater 198:133–142CrossRefPubMedGoogle Scholar
  13. Chakraborty SK, Bhattacharyya A (1991) Degradation of butachlor by two soil fungi. Chemosphere 23:99–105CrossRefGoogle Scholar
  14. Chen YL, Wu TC (1978) Degradation of herbicide butachlor by soil microbes. J Pestic Sci 3:411–417CrossRefGoogle Scholar
  15. Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G (2012) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-Trichloro-2-Pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS One 7:e47205. https://doi.org/10.1371/journal.pone.0047205 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Edwards CA (1986) In: Van Hofsten B, Eckstrom G (eds) Agrochemicals as environmental pollutants. In control of pesticide applications and residues in food. A guide and directory. Swedish Science Press, UppsalaGoogle Scholar
  17. El Zorgani GA, Omer MEH (1974) Metabolism of endosulfan isomers by Aspergillus niger. Bull Environ Cont Toxicol 12:182–185CrossRefGoogle Scholar
  18. Elguetaa S, Santosa C, Limab N, Diezc MC (2016) Atrazine dissipation in a biobed system inoculated with immobilized white-rot fungi. Arch Agron Soil Sci 62:1451–1461CrossRefGoogle Scholar
  19. Engst R, Kujawa M (1968) Enzymatischer addau des DDT durch schimmelplize. 3. Mitt. Darstellung des 2,2-bis (p-chlorophenyl)-acetaldehyds (DDHO) and seine Bedeutung im abbaucyclus. Nahrung 12:783–785CrossRefGoogle Scholar
  20. Gan J, Koskinen WC (1998) Pesticide fate and behaviour in soil at elevated concentrations. In: Kearney PC (ed) Pesticide remediation in soils and water. John Wiley & Sons, Chichester, pp 59–84Google Scholar
  21. Ganash MA, Abdel Ghany TM, Reyad AM (2016) Pleurotus ostreatus as a biodegradator for organophosphorus insecticide malathion. J Environ Anal Toxicol 6:369Google Scholar
  22. Graeme M (2005) Resistance Management - Pesticide Rotation. Ontario Ministry of Agriculture, Food and Rural AffairsGoogle Scholar
  23. Gupta P (2004) Pesticide exposure-Indian scene. J Dent Technol 198:118–119Google Scholar
  24. Hasan HAH (1999) Fungal utilization of organophosphate pesticides and their degradation by Aspergillus flavus and A. sydowii in soil. Folia Microbiol 44:77–84CrossRefGoogle Scholar
  25. Huang Y, Xi Z, Luan S (2007) Uptake and biodegradation of DDT by 4 ectomycorrhizal fungi. Sci Total Environ 385:235–241CrossRefPubMedGoogle Scholar
  26. Joshi DK, Gold MH (1994) Oxidation of dibenzo-p-dioxin by lignin peroxidase from the basidiomycete Phanerochaete chrysosporium. Biochemistry 33:10969–10976CrossRefPubMedGoogle Scholar
  27. Juhler R, Sorensen S, Larsen L (2001) Analysing transformation products of herbicide residues in environmental samples. Water Res 35:1371–1378CrossRefPubMedGoogle Scholar
  28. Katayama A, Mastumara F (1993) Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ Toxicol Chem 12:1059–1065CrossRefGoogle Scholar
  29. Kataoka R, Takagi K, Sakakibara F (2010) A new endosulfan-degrading fungus, Mortierella species, isolated from a soil contaminated with organochlorine pesticides. J Pestic Sci 35:326–332CrossRefGoogle Scholar
  30. Kaufman DD, Blake J (1970) Degradation of atrazine by soil fungi. Soil Biol Biochem 2:73–80CrossRefGoogle Scholar
  31. Kearney P, Wauchope R (1998) Disposal options based on properties of pesticides in soil and water. In: Kearney P, Roberts T (eds) Pesticide remediation in soils and water, Wiley series in agrochemicals and plant protection. Kluwer Academic Publishers, DordrechtGoogle Scholar
  32. Kim YH, Ahn JY, Moon SH, Lee J (2005) Biodegradation and detoxification of organophosphate insecticide, malathion by Fusarium oxysporum f. sp. pisi cutinase. Chemosphere 60:1349–1355CrossRefPubMedGoogle Scholar
  33. Kookana RS, Di HJ, LAG AYLMORE (1998) Degradation rates of eight pesticides in surface and subsurface soils under laboratory and field conditions. Soil Sci 163:404–411CrossRefGoogle Scholar
  34. Krzysko-Lupicka T, Stroff W, Kubs K, Skorupa M, Wieczorek P, Lejczak B, Kafarski P (1997) The ability of soil borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl Environ Microbiol 48:549–552Google Scholar
  35. Kullman SW, Matsumura F (1996) Metabolic pathway utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600PubMedPubMedCentralGoogle Scholar
  36. Kuo W, Regan R (1999) Removal of pesticides from rinsates by adsorption using agricultural residuals as medium. J Sc Health 34:431–447Google Scholar
  37. Lee JK (1978) A study on degradation of butachlor by a soil fungus Chaetomium globosum. J Korean Agric Chem Soc 21:1–10Google Scholar
  38. Lipok J, Dombrovska L, Wieczorek P, Kafarski P (2003) The ability of fungi isolated from stored carrot seeds to degrade organophosphonate herbicides. In: Del Re AAM, Capri E, Padovani L, Trevisan M (eds) Pesticide in air, plant, soil and water system, Proceeding of the XII symposium pesticide chemistry. Piacenza.Google Scholar
  39. Liu YY, Xiong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256 isolated from sewage. Appl Environ Microbiol 67:3746–3749CrossRefPubMedPubMedCentralGoogle Scholar
  40. Martens R (1976) Degradation of endosulfan by soil microorganisms. Appl Environ Microbiol 31:853–858PubMedPubMedCentralGoogle Scholar
  41. Mastumara F, Boush GM (1968) Degradation of insecticides by soil fungus Trichoderma viride. J Econ Entomol 61:610–612CrossRefGoogle Scholar
  42. Masaphy S, Levanon D, Vaya J, Henis Y (1993) Isolation and characterization of a novel atrazine metabolite produced by the fungus Pleurotus pulmonarius, 2-Chloro-4- Ethylamino-6-(1-Hydroxyisopropyl)Amino-1,3,5-Triazine. Appl Environ Microbiol 59:4342–4346PubMedPubMedCentralGoogle Scholar
  43. Miles JRW, Moy P (1979) Degradation of endosulfan and its metabolites by a mixed culture of soil microorganisms. Bull Environ Contam Toxicol 23:13–19CrossRefPubMedGoogle Scholar
  44. Mougin C, Laugero C, Asther M, Dubroca J, Frasse P, Asther M (1994) Biotransformation of the herbicide atrazine by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 60:705–708PubMedPubMedCentralGoogle Scholar
  45. Mougin C, Laugero C, Asther M, Chaplain V (1997) Biotransformation of s-triazine herbicides and related degradation products in liquid culture by the white rot fungus Phanerochaete chrysosporium. Pest Sci 49:169–177CrossRefGoogle Scholar
  46. Mukherjee I, Gopal K (1994) Degradation of β-endosulfan by Aspergillus niger. Toxicol and Environ Chem 46:217–221CrossRefGoogle Scholar
  47. Nerud F, Baldrian J, Gabriel J, Ogbeifun D (2003) Nonenzymic degradation and decolorization of recalcitrant compounds. In: Sasek V et al (eds) The utilization of bioremediation to reduce soil contamination: problems and solutions. Kluwer Academis Publishers, Dordrecht, pp 29–48Google Scholar
  48. Obojska A, Ternana NG, Lejczak B, Kafarski P, McMullan P (2002) Organophosphate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol 68:2081–2084CrossRefPubMedPubMedCentralGoogle Scholar
  49. Omar SA (1998) Availability of phosphorus and sulfur of insecticide origin by fungi. Biodegradation 9:327–336CrossRefPubMedGoogle Scholar
  50. Pointing S (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33CrossRefPubMedGoogle Scholar
  51. Ramadevi C, Nath MM, Prasad MP (2012) Mycodegradation of malathion by a soil fungal isolate, Aspergillus niger. Int J Basic and Appl Chemical Sc 2:108–115Google Scholar
  52. Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiol 146:405–413CrossRefGoogle Scholar
  53. Ryu WR, Shim SH, Jang MY, Jeon YJ, KK O, Cho MH (2000) Biodegradation of pentachlorophenol by white rot fungi under ligninolytic and nonligninolytic conditions. Biotechnol Bioprocess Eng 5:211–214CrossRefGoogle Scholar
  54. Shetty PK, Mitra J, Murthy NBK, Namitha KK, Savitha KN, Raghu K (2000) Biodegradation of cyclodiene insecticide endosulfan by Mucor thermohyalospora MTCC 1384. Curr Sci 79:1381–1383Google Scholar
  55. Singh BK, Kuhad RC (1999) Biodegradation of lindane (γ-hexachlorocyclohexane) by the white-rot fungus Trametes hirsutus. Lett Appl Microbiol 28:238–241CrossRefPubMedGoogle Scholar
  56. Singh BK, Kuhad RC (2000) Degradation of insecticide lindane (γ-HCH) by white-rot fungi Cyathus bulleri and Phanerochaete sordida. Pest Manag Sci 56:142–146CrossRefGoogle Scholar
  57. Talaro KP, Talaro A (2002) Foundations in microbiology, 4th edn. MGraw Hill, New YorkGoogle Scholar
  58. Tekere M, Ncube I, Read J, Zvauya R (2002) Biodegradation of the organochlorine pesticide lindane bya a sub-tropical white rot fungus in batch and packed bed bioreactor systems. Environ Technol 23:199–206CrossRefPubMedGoogle Scholar
  59. Tomlin CDS (2000) The pesticide manual. British Crop Protection Council, SurreyGoogle Scholar
  60. Xiao P, Mori T, Kamei I, Kondo R (2011) Metabolism of organochlorine pesticide heptachlor and its metabolite heptachlor epoxide by white rot fungi belonging to genus Phlebia. FEMS Microbiol Lett 314:40–146CrossRefGoogle Scholar
  61. Zboinska E, Lejczak B, Kafarski P (1992) Organophosphonate utilization by the wild-type strain of Pseudomonas fluorescens. Appl Environ Microbiol 58:2993–2999PubMedPubMedCentralGoogle Scholar
  62. Zhang J, Chiao C (2002) Novel approaches for remediation of pesticide pollutants. Int Environ and Pol 18:423–433CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Sardar Bhagwan Singh PG Institute of Biomedical Sciences and Research BalawalaDehradunIndia

Personalised recommendations