Long-Time Corrosion of Metals and Profiles of Fungi on Their Surface in Outdoor Environments in Lithuania

  • Elena Binkauskienė
  • Dalia Bučinskienė
  • Albinas Lugauskas
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Outdoor corrosion investigations of metals were performed from 2002 to 2012 in different sites on the territory of Lithuania. Elemental analysis detected biomineralization impact on surface corrosion. The survival of fungal communities on corroded metals at the end of 10-year experiment has been identified. The most common culturable fungi were Chrysosporium merdarium, Paecilomyces parvus, Talaromyces flavus, Aureobasidium pullulans, Cladosporium herbarum, Alternaria alternata and partially Cladosporium cladosporioides.

Keywords

Outdoor Corrosion Risk factor Morphological investigationElemental analysis 

References

  1. Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186. https://doi.org/10.1016/j.copbio.2004.05.001 CrossRefPubMedGoogle Scholar
  2. Binkauskienė E, Jasulaitienė V, Lugauskas A (2009) Effect of Aspergillus niger Tiegh. L-10 on the physical and chemical properties of a polyaniline coating in the growth substrate. Synth Met 159:1365–1368. https://doi.org/10.1016/j.synthmet.2009.03.011 CrossRefGoogle Scholar
  3. Binkauskienė E, Lugauskas A, Bukauskas V (2013) The mycological effect on morphological, electrochemical and redox properties of the polyaniline surface. Surf Interface Anal 45:1792–1798. https://doi.org/10.1002/pi.2601 CrossRefGoogle Scholar
  4. Binkauskiene E, Lugauskas A, Prosyčevas I, Pakštas V, Selskiene A, Bučinskiene D, Ručinskiene A (2014) The impact of microscopic fungi on the morphological and structural properties of carbon steel. J Surf Eng Mat Adv Technol 4:242–248. https://doi.org/10.4236/jsemat.2014.44027 Google Scholar
  5. Burford EP, Hillier S, Gadd GM (2006) Biomineralization of fungal hyphae with calcite (CaCO3) and calcium oxalate mono - and dihydrate in carboniferous limestone microcosms. Geomicrobiol J 23:599–611. https://doi.org/10.1080/01490450600964375 CrossRefGoogle Scholar
  6. De la Fuente D, Castano JG, Morcillo M (2007) Long-term atmospheric corrosion of zinc. Corros Sci 49:1420–1436. https://doi.org/10.1016/j.corsci.2006.08.003 CrossRefGoogle Scholar
  7. Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi, vol 1. Acad. Pr., London, p 857Google Scholar
  8. El Mahdy GA, Dyab AKF, Atta AM, Al Lohedan HA (2013) Brass corrosion under a single droplet of NaCl. Int J Electrochem Sci 8:9858–9867Google Scholar
  9. Fomina M, Burford EP, Gadd GM (2005) Toxic metals and fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem. CRC Taylor & Francis, Boca Raton, pp 733–758CrossRefGoogle Scholar
  10. Gadd G (2007) Geomycology: biogeochemical transformation of rocks, minerals, metals and radionuclides by fungi bioweathering and biorerecementation. Mycol Res 111:1–49CrossRefGoogle Scholar
  11. Gadd GM, Rhee YJ, Stephenson K, Wei Z (2012) Geomycology: metals, actinides and biominerals. Environ Microbiol Rep 4:270–296. https://doi.org/10.1111/j.1758-2229.2011.00283.x CrossRefPubMedGoogle Scholar
  12. Gleeson DB, Clipson N, Melville K, Gadd GM, McDermott FP (2005) Characterization of fungal community structure on a weathered pergmatilic granite. Microb Ecol 50:360–368. https://doi.org/10.1007/s00248-006-9052-x CrossRefPubMedGoogle Scholar
  13. Graedel TE (1989) Corrosion mechanisms for zinc exposed to the atmosphere. J Electrochem Soc 136:193C–203C. https://doi.org/10.1149/1.2096868 CrossRefGoogle Scholar
  14. Hughes MN, Poole RK (1989) Metals and microorganisms. Chapman and Hall, London/New York, p 413Google Scholar
  15. Juzeliūnas E, Ramanauskas R, Lugauskas A, Samulevičienė M, Leinartas K (2005) Microbially influenced corrosion acceleration and inhibition. EIS study of Zn and Al subjected for two years to influence of Penicillium frequentans, Aspergillus niger and Bacillus mycoides. Electrochem Commun 7:305–311. https://doi.org/10.1016/j.elecom.2005.01.012 CrossRefGoogle Scholar
  16. Juzeliūnas E, Ramanauskas R, Lugauskas A, Leinartas K, Samulevičienė M, Sudavičius A, Juškėnas R (2007) Microbially influenced corrosion of zinc and aluminium- two-year subjection to influence of Aspergillus niger. Corros Sci 49:4098–4112CrossRefGoogle Scholar
  17. Krätschmer A, Odnevall Wallinder I, Leygraf C (2002) The evolution of outdoor copper patina. Corros Sci 44:425–450. https://doi.org/10.1016/S0010-938X(01)00081-6 CrossRefGoogle Scholar
  18. Lee K, Lee I, Lee C, Ahr H (2007) In situ observation in a scanning electron microscope the exp1iation behaviour of ga1vannea1ed Zn-Fe coating layers. Surf Coat Technol 201:6261–6266. https://doi.org/10.1016/j.surfcoat.2006.11.021 CrossRefGoogle Scholar
  19. Ligier V, Wery M, Hihn JY, Faucheu J, Tachez M (1999) Formation of the main atmospheric zinc and products: NaZn4Cl(OH)6SO4 .6H2O, Zn4SO4(OH)6 .nH2O, Zn4Cl2(OH)4SO4 .5H2O in [Cl−1][SO2 −4][HCO−3][H2O2] electrolytes. Corros Sci 41:1139–1164. https://doi.org/10.1016/S0010-938X(98)00176-0 CrossRefGoogle Scholar
  20. Lone RA (2005) Under the microscope: understanding, detecting, and preventing microbiologically influenced corrosion. AMPTIAC Q 9:3–8. https://doi.org/10.1361/154770205X65851 Google Scholar
  21. Lugauskas A, Paškevičius A, Repečkienė J (2002) Pathogenic and toxic microorganisms in human environment. Publish House Aldonija, Vilnius. (in Lithuanian)Google Scholar
  22. Lugauskas A, Bridžiuvienė D, Narkevičius A, Ivaškevič E (2004) Fungi detected on the corroding metals under atmospheric conditions. Mycol Phytopathol 38:54–61Google Scholar
  23. Lugauskas A, Levinskaitė L, Pečiulytė D, Repečkienė J, Motuzas A, Vaisvalavičius R, Prosyčevas I (2005) Effect of copper, zinc and lead acetates on microorganisms in soil. Ecology 1:61–69Google Scholar
  24. Lugauskas A, Leinartas K, Grigucevičienė A, Sielskienė A, Binkauskienė E (2008) Possibility of micromycetes detected in dust to grow on metals (Al, Fe, Cu, Zn) and on polyaniline-modified Ni. Ecology 54:149–157. https://doi.org/10.2478/200810055-008-0023-z Google Scholar
  25. Lugauskas A, Prosyčevas I, Ramanauskas R, Grigucevičienė A, Selskienė A, Pakštas V (2009) The influence of micromycetes on the corrosion behaviour of metals (Cu, Zn) in environments polluted with organic substances. Chemija 20:141–153Google Scholar
  26. Lugauskas A, Prosyčevas I, Narkevičius A, Selskienė A, Bučinskienė D, Ručinskienė A, Binkauskienė E (2013) Influence of mitosporic fungi upon zinc-polymeric coatings on steel under the different environment. J Environ Eng Landsc Manag 21:199–208. https://doi.org/10.3846/16486897.2012.721370 CrossRefGoogle Scholar
  27. Lugauskas A, Bikulčius G, Bučinskienė D, Selskienė A, Pakštas V, Binkauskienė E (2015) Study of the deterioration of zinc and copper in the different environments of Lithuania. Chemija 26:219–227Google Scholar
  28. Lugauskas A, Bikulčius G, Bučinskienė D, Selskienė A, Pakštas V, Binkauskienė E (2016) Long-time corrosion of metals (steel and aluminium) and profiles of fungi on their surface in outdoor environments in Lithuania. Chemija 27:135–142Google Scholar
  29. Medas D, Cidu R, Lattanzi P, Podda F, De Giudici G (2012) Natural biomineralization in the contaminated sediment-water system at the injurious abandoned mine. In: Kothe E, Varma A (eds) Bio-geo interactions in metal-contaminated soils. Springer, Berlin/Heidelberg, pp 113–130CrossRefGoogle Scholar
  30. Miečinskas P, Leinartas K, Uksienė V, Lugauskas A, Ramanauskas R, Juzeliūnas E (2006) QCM study of microbially influenced corrosion of aluminium subjected to the influence of Aspergillus niger Tiegh. Chemija 17:30–34Google Scholar
  31. Morin SA, Forticaux A, Bierman MJ (2011) Screw dislocation-driven growth of two-dimensional nanoplates. Nano Lett 11:4449–4455. https://doi.org/10.1021/nl202689m CrossRefPubMedGoogle Scholar
  32. Narkevičius A, Bučinskienė D, Samulevičienė M, Ramanauskas R (2003) Corrosion behaviour of Zn coatings electrodeposited from alkaline and acid solutions. Trans Inst Met Finish 81:93–97CrossRefGoogle Scholar
  33. Prasad R (ed) (2016) Advances and applications through fungal nanobiotechnology. Fungal biology. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-42990-8 Google Scholar
  34. Ramanauskas R, Mulesnikova L, Maldonado L, Dobrovolskis P (1998) Characterization of the corrosion behaviour of Zn and Zn alloy electrodeposits: atmospheric and accelarated test. Corros Sci 40:401–410CrossRefGoogle Scholar
  35. Ramanauskas R, Quintona P, Bartolo-Perez P, Diaz-Ballote L (2000) Effect of corrosion product on atmospheric corrosion of electrodeposited zinc and zinc alloy coating. Corrosion 56:588–597CrossRefGoogle Scholar
  36. Ramanauskas R, Juzeliūnas E, Narkevičius A, Bučinskienė D, Lugauskas A, Pečiulytė D, Levinskaitė L, Ulevičius V, Jasinevičienė D (2005) Investigation of microbiologically influenced corrosion. 1. Characterization of natural outdoors conditions in Lithuania. Chemija 16:25–34Google Scholar
  37. Santana JJ, Fernández-Pérez BM, Morales J, Vasconcelos HC, Souto RM, González S (2012) Characterization of the corrosion products formed on zinc in archipelagic subtropical environments. Int J Electrochem Sci 7:12730–12741Google Scholar
  38. Syed S (2008) Outdoor atmospheric corrosion of copper in Saudi Arabia. Corros Eng Sci Technol 43:267–272. https://doi.org/10.1179/174327807X234705 CrossRefGoogle Scholar
  39. Videla HA, Herrera LK (2009) Understanding microbial inhibition of corrosion. A comprehensive overview. Int Biodeter Biodegr 63:896–900. https://doi.org/10.1016/j.ibiod.2009.02.002 CrossRefGoogle Scholar
  40. Zhang C, Yu Z, Zeng G, Jing M, Yang Z, Cui F, Zhu M, Shen L, Hu L (2014a) Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int 73:270–281. https://doi.org/10.1016/j.envint.2014.08.010 CrossRefPubMedGoogle Scholar
  41. Zhang Z, Provis JL, Reid A, Wang H (2014b) Geopolymer foam concrete: an emerging material for sustainable construction. Constr Build Mater 56:113–127. https://doi.org/10.1016/j.conbuildmat.2014.01.081 CrossRefGoogle Scholar
  42. Zhao R, Yang T, Miller MA, Chan CK (2013) Electrochemical properties of nanostructured copper hydroxysulfate mineral brochantite upon reaction with lithium. Nano Lett 13:6055–6063. https://doi.org/10.1021/nl403286m CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Elena Binkauskienė
    • 1
  • Dalia Bučinskienė
    • 1
  • Albinas Lugauskas
    • 1
  1. 1.State Research Institute Center for Physical Sciences and TechnologyVilniusLithuania

Personalised recommendations