Skip to main content

Applications of Haloalkaliphilic Fungi in Mycoremediation of Saline-Alkali Soil

  • Chapter
  • First Online:
Mycoremediation and Environmental Sustainability

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Salinity and alkalinity stress are natural status of the environment, but salinization lands are increasing because of secondary salinization of arable land every year. Soda saline-alkaline lands are significantly harmful to agriculture due to the coexistence of salinity and alkalinity and difficulties for management; thus, efficacy strategies to remediate such soil are urgent. The ecosystem of saline-alkaline land is relatively simple and fragile, and one of the most important reasons is lack of fungal organisms, which play potential roles in buffering salinity and alkalinity stress through absorbing and/or constraining salt ions, secreting organic acids and/or macromolecular degradation enzymes, and other benefits of biomasses for soil health; therefore, haloalkaliphilic fungi are excellent biological resources for soil mycoremediation. In this chaptor, we focused on the following aspects: the isolation of extremophilic fungi, salt- and alkalinity-resistant genes, and high-effectively degrading enzymes, genetically improvement for haloalkaliphilic fungi, and their application in saline-alkali soil remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Fafez S (1981) Halophilic fungi of desert soils in Saudi Arabia. Mycopathologia 75:75–80

    Article  Google Scholar 

  • Abrahao MC, Gugliotta AM, Da Silva R, Fujieda RJ, Boscolo M, Gomes E (2008) Ligninolytic activity from newly isolated basidiomycete strains and effect of these enzymes on the azo dye orange II decolourisation. Ann Microbiol 58:427–432

    Article  CAS  Google Scholar 

  • Almagro A, Prista C, Castro S, Quintas C, Madeira-Lopes A, Ramos J, Loureiro-Dias MC (2000) Effects of salts on Debaryomyces hansenii and Saccharomyces cerevisiae under stress conditions. Int J Food Microbiol 56:191–197

    Article  CAS  PubMed  Google Scholar 

  • Arahal DR, Marquez MC, Volcani BE, Schleifer KH, Ventosa A (1999) Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea. Int J Syst Bacteriol 49:521–530

    Article  PubMed  Google Scholar 

  • Arakaki R, Monteiro D, Boscolo R, Gomes E (2013) Halotolerance, ligninase production and herbicide degradation ability of basidiomycetes strains. Braz J Microbiol 44:1207–1214

    Article  CAS  PubMed  Google Scholar 

  • Barnes SJ, Weitzman PD (1986) Organization of citric acid cycle enzymes into a multienzyme cluster. FEBS Lett 201(2):267–270

    Article  CAS  PubMed  Google Scholar 

  • Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    Article  PubMed  Google Scholar 

  • Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Science 259:1760–1763

    Article  CAS  PubMed  Google Scholar 

  • Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc R Soc Lond B 265:1461–1465

    Article  CAS  Google Scholar 

  • Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP, Volz PA (2000) Fungi discovered in the Dead Sea. Mycol Res News 104:132–133

    Google Scholar 

  • Buchalo AS, Wasser SP, Molitoris HP, Volz PA, Kurchenko I, Lauer I, Rawal B (1999) Species diversity and biology of fungal life in the extremely hypersaline water of the Dead Sea. In: Wasser SP (ed) Evolutionary theory and processes: modern perspectives. papers in honour of Eviatar Nevo. Kluwer Academic Publishers, Dordrecht, pp 293–300

    Google Scholar 

  • Butinar L, Zalar P, Frisvad JC, Gunde-Cimerman N (2005) The genus Eurotium-members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol Ecol 51:155–166

    Article  CAS  PubMed  Google Scholar 

  • Casamayor EO, Massana R, Benlloch S, Øvreås L, Díez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348

    Article  PubMed  Google Scholar 

  • Castillo G, Demoulin V (1997) NaCl salinity and temperature effects on growth of three wood-rotting basidiomycetes from a Papua New Guinea coastal forest. Mycol Res 101:341–344

    Article  Google Scholar 

  • Cui X, Wei Y, Wang Y, Zheng Y, Li J, Wong F, Liu S, Yan H, Jia B, Liu J, Zhang S (2015) Proteins interacting with mitochondrial ATP-dependent Lon protease (MAP1) in Magnaporthe oryzae are involved in rice blast disease. Mol Plant Pathol 16(8):847–859

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Wei Y, Xie XL, Chen LN, Zhang SH (2017) Mitochondrial and peroxisomal Lon proteases play opposing roles in reproduction and growth but co-function in the normal development, stress resistance and longevity of Thermomyces lanuginosus. Fungal Genet Biol 103:42–54

    Article  CAS  PubMed  Google Scholar 

  • de Wit PJ (1992) Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu Rev Phytopathol 30:391–418

    Article  PubMed  Google Scholar 

  • Delgado-Jarana J, Sousa S, González F, Rey M, Llobell A (2006) ThHog1 controls the hyperosmotic stress response in Trichoderma harzianum. Microbiology 152(Pt 6):1687–1700

    Article  CAS  PubMed  Google Scholar 

  • Echigo A, Hino M, Fukushima T, Mizuki T, Kamekura M, Usami R (2005) Endospore of halophilic bacteria of the family Bacillaceae isolated from nonsaline Japanese soil may be transported by Kosa event (Asian dust storm). Saline Syst 1:1–13

    Article  Google Scholar 

  • Elmeleigy MA, Hoseiny EN, Ahmed SA, Alhoseiny AM (2010) Isolation, identification, morphogenesis and ultrastructure of obligate halophilic fungi. J Appl Sci Environ Sanit 5:201–202

    Google Scholar 

  • Fang J, Han X, Xie L, Liu M, Qiao G, Jiang J, Zhuo R (2014) Isolation of salt stress-related genes from Aspergillus glaucus CCHA by random overexpression in Escherichia coli. ScientificWorldJournal 2014:620959. https://doi.org/10.1155/2014/620959

    PubMed  PubMed Central  Google Scholar 

  • Gao Q, Yang XS, Yun R, Li CP (1996) MAGE, a dynamic model of alkaline grassland ecosystems with variable soil characteristics. Ecol Model 93:19–32

    Article  CAS  Google Scholar 

  • García-Salcedo R, Casamayor A, Ruiz A, González A, Prista C, Loureiro-Dias MC, Ramos J, Ariño J (2006) Heterologous expression implicates a GATA factor in regulation of nitrogen metabolic genes and ion homeostasis in the halotolerant yeast Debaryomyces hansenii. Eukaryot Cell 5(8):1388–1398

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghaly FM (2002) Role of natural vegetation in improving salt affected soil in northern Egypt. Soil Tillage Res 64:173–178

    Article  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. CABI Publishing, Wallingford

    Google Scholar 

  • Gostinčar C, Grube M, De Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11

    Article  PubMed  Google Scholar 

  • Gostinčar C, Turk M (2012) Extremotolerant fungi as genetic resources for biotechnology. Bioengineered 3(5):293–297. https://doi.org/10.4161/bioe.20713

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunde-Cimerman N, Butinar L, Sonjak S, Turk M, Ursic V, Zalar P, Plemenitaš A (2005) Halotolerant and halophilic fungi from coastal environments in the Arctics. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya. Springer, Dordrecht, pp 397–423

    Chapter  Google Scholar 

  • Gunde-Cimerman N, Ramos J, Plemenitas A (2009) Halotolerant and halophilic fungi. Mycol Res 113:1231–1241

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B, Driguez H, Viet C, Schulein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat Biotechnol 3:722–726

    Article  CAS  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hozzein WN, Ali MIA, Ahmed MS (2013) Antimicrobial activities of some alkaliphilic and alkaline-resistant microorganisms isolated from Wadi Araba, the eastern desert of Egypt. Life Sci J 10(4):1823–1828

    Google Scholar 

  • Ilyas M, Miller RW, Qureshi RH (1993) Hydraulic conductivity of saline-sodic soil after gypsum application and cropping. Soil Sci Soc Am J 57:1580–1585

    Article  Google Scholar 

  • Kanchanadumkerng P, Sakka M, Sakka K, Wiwat C (2017) Characterization of endoglucanase from Paenibacillus sp. M33, a novel isolate from a freshwater swamp forest. J Basic Microbiol 57(2):121–131. https://doi.org/10.1002/jobm.201600225

    Article  CAS  PubMed  Google Scholar 

  • Karlen DL, Andrews SS, Wienhold BJ, Zobeck TM (2008) Soil quality assessment: past, present and future. Electr J Integr Biosci 6(1):3–14

    Google Scholar 

  • Kis-Papo T, Grishkan I, Oren A, Nevo E (2001a) Comparison of fungal diversity in the Dead Sea and the Jordan River. Israel J Plant Sci 49:160

    Google Scholar 

  • Kis-Papo T, Grishkan I, Oren A, Wasser SP, Nevo E (2001b) Spatiotemporal diversity of filamentous fungi in the hypersaline Dead Sea. Mycol Res 105:749–756

    Article  Google Scholar 

  • Li CH, Wang HR, Yan TR (2012) Cloning, purification, and characterization of a heat- and alkaline-stable endoglucanase B from Aspergillus niger BCRC31494. Molecules 17:9774–9789

    Article  CAS  PubMed  Google Scholar 

  • Li J, Liang X, Wei Y, Liu J, Lin F, Zhang S (2014) An ATP-dependent protease homolog ensures basic standards of survival and pathogenicity for Magnaporthe oryzae. Eur J Plant Pathol 141(4):703–716

    Article  Google Scholar 

  • Liang X, Liu Y, Xie L, Liu X, Wei Y, Zhou X, Zhang S (2015) A ribosomal protein AgRPS3aE from halophilic Aspergillus glaucus confers salt tolerance in heterologous organisms. Int J Mol Sci 16(2):3058–3070. https://doi.org/10.3390/ijms16023058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Qin Y, Hu Y, Gao M, Peng S, Qu Y (2013) An endo-1,4-β-glucanase PdCel5C from cellulolytic fungus Penicillium decumbens with distinctive domain composition and hydrolysis product profile. Enzym Microb Technol 52:190–195

    Article  CAS  Google Scholar 

  • Liu XD, Liu JL, Wei Y, Tian YP, Fan FF, Pan HY, Zhang SH (2011) Isolation, identification and biologic characteristics of an extreme halotolerant Aspergillus sp. J Jilin Univ. (In Chinese; abstract in English) 49:548–552

    CAS  Google Scholar 

  • Liu XD, Wei Y, Zhou XY, Pei X, Zhang SH (2015) Aspergillus glaucus aquaglyceroporin gene glpF confers high osmosis tolerance in heterologous organisms. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02127-15

  • Liu XD, Xie L, Wei Y, Zhou XY, Jia B, Liu J, Zhang SH (2014) Abiotic stress resistance, a novel moonlighting function of ribosomal protein RPL44 in the halophilic fungus Aspergillus glaucus. Appl Environ Microbiol 80(14):4294–4300. https://doi.org/10.1128/AEM.00292-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Madigan M, Martinko J, Stahl D, Clark D (2012) Brock biology of microorganisms, 13th edn. Pearson Education, San Francisco

    Google Scholar 

  • Melero S, Madejo’n E, Ruiz JC, Herencia JF (2007) Chemical and biochemical properties of a clay soil under dryland agriculture system as affected by organic fertilization. Eur J Agron 26:327–334

    Article  CAS  Google Scholar 

  • Mernitz G, Koch A, Henrissat B, Schulz G (1996) Endoglucanase II (EGII) of Penicillium janthinellum: cDNA sequence, heterologous expression and promoter analysis. Curr Genet 29:490–495

    Article  CAS  PubMed  Google Scholar 

  • Molitoris HP, Buchalo AS, Kurchenko I, Nevo E, Rawal BS, Wasser SP, Oren A (2000) Physiological diversity of the first filamentous fungi isolated from the hypersaline Dead Sea. In: Hyde KD, Ho WH, Pointing SB (eds) Aquatic mycology across the millennium, vol 5. Fungal Diversity, Hong Kong, pp 55–70

    Google Scholar 

  • Moubasher AH, Abdel-Hafez SII, Bagy MMK, Abdel-Satar MA (1990) Halophilic and halotolerant fungi in cultivated desert and salt marsh soils from Egypt. Acta Mycol 26(2):65–81

    Article  Google Scholar 

  • Nazareth S, Gonsalves V, Nayak S (2012) A first record of obligate halophilic aspergilli from the Dead Sea. Indian J Microbiol 52:22–27

    Article  PubMed  Google Scholar 

  • Nazareth S, Gonsalves V (2014) Aspergillus penicillioides – a true halophile existing in hypersaline and polyhaline econiches. Ann Microbiol 64:397–402

    Article  Google Scholar 

  • Nielsen P, Fritze D, Priest FG (1995) Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761

    Article  CAS  Google Scholar 

  • Oo AN, Iwai CB, Saenjan P (2013) Soil properties and maize growth in saline and nonsaline soils using cassava-industrial waste compost and vermicompost with or without earthworms. Land Degrad Dev. https://doi.org/10.1002/ldr2208

  • Pereira I, Madeira A, Prista C, Loureiro-Dias MC, Leandro MJ (2014) Characterization of new polyol/H+ symporters in Debaryomyces hansenii. PLoS One 9(2):e88180. https://doi.org/10.1371/journal.pone.0088180

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinar G, Ramos C, Rolleke S, Schabereiter-Gurtner C, Vybiral D, Lubitz W, Denner EB (2001) Detection of indigenous Halobacillus populations in damaged ancient wall paintings and building materials: molecular monitoring and cultivation. Appl Environ Microbiol 67:4891–4895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prista C, Loureiro-Dias MC, Montiel V, García R, Ramos J (2005) Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Res 5(8):693–701

    Article  CAS  PubMed  Google Scholar 

  • Prista C, Soeiro A, Vesely P, Almagro A, Ramos J, Loureiro-Dias MC (2002) Genes from Debaryomyces hansenii increase salt tolerance in Saccharomyces cerevisiae W303. FEMS Yeast Res 2:151–157

    CAS  PubMed  Google Scholar 

  • Qadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline-sodic soils. Adv Agron 96:197–247

    Article  CAS  Google Scholar 

  • Qin Y, Wei X, Song X, Qu Y (2008) Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. J Biotechnol 135:190–195

    Article  CAS  PubMed  Google Scholar 

  • Rady MM (2011) Effects on growth, yield, and fruit quality in tomato (Lycopersicon esculentum Mill.) using a mixture of potassium humate and farmyard manure as an alternative to mineral-N fertilizer. J Hortic Sci Biotechnol 86(3):249–254

    Article  Google Scholar 

  • Rietz DN, Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854

    Article  CAS  Google Scholar 

  • Robbins CW (1986) Sodic calcareous soil reclamation as affected by different amendments and crops. Agron J 78:916–920

    Article  CAS  Google Scholar 

  • Sahin U, Eroğlu S, Sahin F (2011) Microbial application with gypsum increases the saturated hydraulic conductivity of saline-sodic soils. Appl Soil Ecol 48(2):247–250

    Article  Google Scholar 

  • Santos SX, Carvalho CC, Bonfa MR, Silva R, Gomes E (2004) Screening for pectinolytic activity of wood-rotting basidiomycetes and characterization of the enzymes. Folia Microbiol 49:46–52

    Article  Google Scholar 

  • Sardinha M, Müller T, Schmeisky H, Joergensen RG (2003) Microbial performance in soils along a salinity gradient under acidic conditions. Appl Soil Ecol 23:237–244

    Article  Google Scholar 

  • Schuster E, Dunn-Coleman N, Frisvad JC, van Dijck PW (2002) On the safety of Aspergillus niger- A review. Appl Microbiol Biotechnol 59:426–435

    Article  CAS  PubMed  Google Scholar 

  • Serrano R, Gaxiola R (1994) Microbial models and salt stress tolerance in plants. Crit Rev Plant Sci 13:121–138

    Article  CAS  Google Scholar 

  • Sparling GP, West AW, Reynolds J (1989) Influence of soil moisture regime on the respiration response of soils subjected to osmotic stress. Aust J Soil Res 27:161–168

    Article  Google Scholar 

  • Szabolcs I (1994) Soils and salinization. In: Pessarakli M (ed) Handbook of Plant and Crop Stress. Marcel Dekker, New York, pp 3–11

    Google Scholar 

  • Tamura M, Kawasaki H, Sugiyama J (1999) Identity of the xerophilic species Aspergillus penicillioides: integrated analysis of the genotypic and phenotypic. J Gen Appl Microbiol 45:29–37

    Article  CAS  PubMed  Google Scholar 

  • Taneja K, Gupta S, Kuhad RC (2002) Properties and application of a partially purified alkaline xylanase from an alkalophilic fungus Aspergillus nidulans KK-99. Bioresour Technol 85(1):39–42

    Article  CAS  PubMed  Google Scholar 

  • Tejada M, Garcia C, Gonzalez JL, Hernandez MT (2006) Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biol Biochem 38:1413–1421

    Article  CAS  Google Scholar 

  • Tomme P, Warren RAJ, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81

    Article  CAS  PubMed  Google Scholar 

  • Van Bruggen AHC, Semenov AM (2000) In search of biological indicators for soil health and disease suppression. Appl Soil Ecol 15:13–24

    Article  Google Scholar 

  • Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P, Wang T (2005) Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomol Eng 22:89–94

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Sun X, Li S, Zhang T, Zhang W, Zhai P (2014) Application of Organic Amendments to a Coastal Saline Soil in North China: Effects on Soil Physical and Chemical Properties and Tree Growth. PLoS One 9(2):e89185

    Article  PubMed  PubMed Central  Google Scholar 

  • Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137:100–108

    Article  CAS  Google Scholar 

  • Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32:667–685

    PubMed  Google Scholar 

  • Yan J, Song WN, Nevo E (2005) A MAPK gene from Dead Sea fungus confers stress tolerance to lithium salt and freezing-thawing: prospects for saline agriculture. Proc Natl Acad Sci U S A 102(52):18992–18997

    Article  Google Scholar 

  • Yuan BC, Li ZZ, Liu H, Gao M, Zhang YY (2007) Microbial biomass and activity in salt affected soils under arid conditions. Appl Soil Ecol 35(2):319–328

    Article  Google Scholar 

  • Zalar P, Kocuvan MA, Plemenitas A, Gunde-Cimerman N (2005) Halophilic black yeasts colonize wood immersed in hypersaline water. Bot Mar 48:323–326

    Article  Google Scholar 

  • Zarafeta D, Kissas D, Sayer C, Gudbergsdottir SR, Ladoukakis E, Isupov MN, Chatziioannou A, Peng X, Littlechild JA, Skretas G, Kolisis FN (2016) Discovery and characterization of a thermostable and highly halotolerant GH5 cellulase from an icelandic hot spring isolate. PloS One 11:e0146454

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Liu Y, Yan K, Wu H (2007) Decolorization of an anthraquinone-type dye by a bilirubin oxidase-producing nonligninolytic fungus Myrothecium sp IMER1. J Biosci Bioeng 104:104–114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by two grants of the National Natural Science Foundation of China (grant nos. 31671972 and 31670141) and a project of the Ministry of Science and Technology of China (grant no. 2016YFD0300703). The authors would like to thank the members of Zhang laboratory at Jilin University, and the collaborators Hon-Ming LAM, Zhen-Dong CHEN, Run-Zhi TAO, and Chi ZHU, who gave us a lot of encouragement and assist in promoting the transformation of the scientific and technological achievements about saline-alkali soil mycoremediation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, SH., Wei, Y. (2017). Applications of Haloalkaliphilic Fungi in Mycoremediation of Saline-Alkali Soil. In: Prasad, R. (eds) Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-68957-9_12

Download citation

Publish with us

Policies and ethics