Advertisement

Arbuscular Mycorrhizal Fungi Provide Complementary Characteristics that Improve Plant Tolerance to Drought and Salinity: Date Palm as Model

  • Ahmed Qaddoury
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

In arid areas, date palm (Phoenix dactylifera L.) is considered crucial to the ecosystem establishment and maintenance as it protects the surrounding vegetation against desert influences and provides adequate microclimate to the understory crops. Palm grove, the keystone of the oasian ecosystem balance, is often subjected to severe environmental constraints such as nutrient-poor soil, long-term drought, high temperature, salin soil, and desertification. These constraints cause not only reduction in the production of dates, the principal food of humans and animals in the desert, but also accentuate the fragility of this ecosystem that is no longer able to buffer the effects of climate fluctuations.

One of the main challenges for agricultural success in arid land is the efficient exploitation of soil, not only as an agricultural resource base but also as a living and fragile system, to guarantee its long-term stability and productivity. Among the soil fertility factors, the biological component is the most important since the agronomic potentialities of a soil depend on it. The management of soil microorganisms as providers of key ecological services is at the forefront of governing sustainable soil fertility by controlling cycles of major plant nutrients. These organisms, often referred to as “ecosystem engineers,” “biocontrol agents,” “biofertilizers,” or “bioenhancers,” can participate in improving plant growth and nutrition, strengthening plant performance, restoring ecosystems, and combating pests and pollution. The most important providers of these ecological services are arbuscular mycorrhizal (AM) fungi (AMF) which can form symbiotic association (mycorrhiza) with roots of most land plants.

Mycorrhiza refers to a mutual association or symbiosis between plants and soilborne fungi that colonize the cortical tissue of roots during periods of active plant growth. The ability of the root systems to establish beneficial symbiotic relationships with soil microorganisms represents one of the most successful strategies that land plants have developed to cope with abiotic and biotic stresses imposed during the colonization of terrestrial ecosystems.

Mycorrhizas are multifunctional: the multiple benefits gained from complementary characteristics that AM symbiosis provide can be characterized agronomically by increased growth and yield, physiologically by improved nutrients statut and water relations, and ecologically by improved ecosystem stability and preservation. The fungal mycelium that extends from the mycorrhizal roots forms a three-dimensional network linking the root and the soil environment beyond the nutrient depletion zone. It constitutes an efficient system for water and nutrient uptake, scavenging nutrient-poor conditions. The mycelium also contributes to the formation of water-stable aggregates necessary for good soil quality.

Mycorrhizal performances are more pronounced under harsh conditions including poor soil, water scarcity and soil salinity. As a result, mycorrhizal plants are often more competitive and better able to tolerate environmental constraints than are non-mycorrhizal plants.

In this chapter, we will compile and discuss the current knowledge concerning mycorrhizas occurrence and effectiveness in increasing plant performance in terms of growth, nutrition and protection against detrimental effect of abiotic stresses. An overview of most persuasive and effective uses of AMF to improve date palm growth and productivity in the context of the harsh conditions of arid land is highlighted.

Keywords

Mycorrhiza Biofertilizers Sustainability Date palm Water stress Saline soil 

References

  1. Abbaspour H, Saeidi-Sar S, Afshari H, Abdel-Wahhab MA (2012) Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. J Plant Physiol 169(7):704–709PubMedCrossRefGoogle Scholar
  2. Al-Karaki GN (2013) Application of mycorrhizae in sustainable date palm cultivation. Emir J Food Agric 25(11):854–862CrossRefGoogle Scholar
  3. Al-Karaki GN, Othman Y, Al-Ajmi A (2007) Effects of mycorrhizal fungi inoculation on landscape turf establishment under Arabian Gulf region conditions. Arab Gulf J Sci Res 25(3):147–152Google Scholar
  4. Al-Whaibi MH, Khaleil AS (1994) The effect of Mg on Ca, K and P content of date palm seedlings under mycorrhizal and non-mycorrhizal conditions. Mycoscience 35:213–217CrossRefGoogle Scholar
  5. Al-Yahya’ei MN, Oehl F, Vallino M, Lumini E, Redecker D, Wiemken A, Bonfante P (2011) Unique arbuscular mycorrhizal fungal communities uncovered in date palm plantations and surrounding desert habitats of Southern Arabia. Mycorrhiza 21(3):195–209PubMedCrossRefGoogle Scholar
  6. Ames RN, Reid CPP, Porter LK, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two N-labelled sources by Glomus mosseae. New Phytol 95:381–396CrossRefGoogle Scholar
  7. Amri E (2015) Influence of Arbuscular mycorrhizal fungi on rooting ability of auxin treated stem cuttings of Dalbergia melanoxylon (Guill and Perr.) Res J Bot 10:88–97CrossRefGoogle Scholar
  8. Auge RM, Foster JG, Loescher WH, Stodola AJ (1992) Symplastic molality of free amino acids and sugars in Rosa roots with regard to VA mycorrhizae and drought. Symbiosis 12:1–17Google Scholar
  9. Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42CrossRefGoogle Scholar
  10. Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84(4):373–381CrossRefGoogle Scholar
  11. Awad MA (2008) Promotive effects of a 5-aminolevulinic acid-based fertilizer on growth of tissue culture-derived date palm plants (Phoenix dactylifera L.) during acclimatization. Sci Hortic 118:48–52CrossRefGoogle Scholar
  12. Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soilborne plant pathogens-an overview of the mechanisms involved. Mycorrhiza 6:457–464CrossRefGoogle Scholar
  13. Barea JM, Palenzuela J, Cornejo P, Sánchez-Castro I, Navarro-Fernández C, Lopéz- García A et al (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292–1301CrossRefGoogle Scholar
  14. Baslam M, Qaddoury A, Goicoechea N (2014) Role of native and exotic mycorrhizal symbiosis to develop morphological, physiological and biochemical responses coping with water drought of date palm, Phoenix dactylifera. Trees 28(1):161–172CrossRefGoogle Scholar
  15. Bearden BN, Petersen L (2000) Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant Soil 218:173–183CrossRefGoogle Scholar
  16. Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325PubMedPubMedCentralGoogle Scholar
  17. Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41(7):1491–1496CrossRefGoogle Scholar
  18. Benhiba L, Essahibi A, Fouad MO, Qaddoury A (2014) Effet des champignons mycorrhiziens arbusculaires, sous conditions semi contrôlées sur la croissance des vitro-plants de palmier dattier sous stress en phosphore. In: International congress on mycorrhizae, October 15–17 Marrakech–MoroccoGoogle Scholar
  19. Benhiba L, Fouad MO, Essahibi A, Gholam C, Qaddoury A (2015) Arbuscular mycorrhizal symbiosis enhanced growth and antioxidants metabolism in date palm seedlings subjected to long-term drought. Trees 29:1725–1733CrossRefGoogle Scholar
  20. Bethlenfalvay GJ, Schüepp H (1994) Arbuscular mycorrhizas and agrosystem stability. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser Verlag, Basel, pp 117–131CrossRefGoogle Scholar
  21. Binet MN, Lemoine MC, Martin C, Chambon C, Gianinazzi S (2007) Micropropagation of olive (Olea europaea L.) and application of mycorrhiza to improve plantlet establishment. In Vitro Cell Dev Biol Plant 43(5):473–478Google Scholar
  22. Blal B, Gianinazzi-Pearson V (1990) Interest of endomycorrhizae for the production of micropropagated oil palm clones. Agric Ecosyst Environ 29:39–43CrossRefGoogle Scholar
  23. Bonfante P, Bianciotto V (1995) Presymbiotic versus symbiotic phase in arbuscular endomycorrhizal fungi: morphology and cytology. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer-Verlag, Berlin, pp 229–247CrossRefGoogle Scholar
  24. Bouamri R, Dalpe Y, Serrhini MN, Bennani A (2006) Arbuscular mycorrhizal fungi species associated with rhizosphere of Phoenix dactylifera L. (date palm) in Morocco. Afr J Biotechnol 5(6):510–516Google Scholar
  25. Bouamri R, Dalpé Y, Serrhini MN (2014) Effect of seasonal variation on arbuscular mycorrhizal fungi associated with date palm. Emir J Food Agric 26(11):977–986CrossRefGoogle Scholar
  26. Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26PubMedCrossRefGoogle Scholar
  27. Carvalho LM, Correia PM, Martins-Loucao MA (2001) Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza 14:165–170CrossRefGoogle Scholar
  28. Chao CCT, Krueger RR (2007) The date palm: overview of biology, uses and cultivation. Hortic Sci 42(5):1077–1082Google Scholar
  29. Chittora M, Suthar RK, Purohit SD (2010) Root colonization and improved growth performance of micropropagated Terminalia bellerica Roxb. plantlets inoculated with Piriformospora indica during ex.vitro acclimatization. Acta Hort (ISHS) 865:193–198CrossRefGoogle Scholar
  30. Christopher A (2015) Development and functioning of mycorrhizal roots systems under non-uniform rootzone salinity, PhD thesis 2015, p 243, University College of Food and Agriculture, United Arab EmiratesGoogle Scholar
  31. Davies FT, Potter JR, Linderman RG (1992) Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. J Plant Physiol 139:289–294CrossRefGoogle Scholar
  32. Dehne HW, Backhaus GF (1986) The use of vesicular-arbuscular mycorrhizal fungi in plant production. I. Inoculum production, A. Pflanzenkranheiten Pflanzenschutz 93:415–424Google Scholar
  33. Diatta ILD, Kane A, Agbangba CE, Sagna M, Diouf D, Aberlenc-Bertossi F, Duval Y, Borgel A, Sane D (2014) Inoculation with arbuscular mycorrhizal fungi improves seedlings growth of two sahelian date palm cultivars (Phoenix dactylifera L., cv. Nakhla hamra and cv. Tijib) under salinity stresses. Adv Biosci Biotechnol 5:64–72CrossRefGoogle Scholar
  34. Diaz G, Azcon-Aguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum Spartum and Anthyllis Cytisoides. Plant Soil 180:241–249Google Scholar
  35. Diouf J (2011) Biotechologies for agricultural development. Food Agriculture Organization of the United Nations, RomeGoogle Scholar
  36. Douds DD, Bécard G, Pfeffer PE, Doner LW (1995) Effect of vesicular–arbuscular mycorrhizal fungi on rooting of Sciadopitys verticillata Sieb & Zucc. Cuttings. Hortscience 30(1):133–134Google Scholar
  37. Dreyer B (2004) Estudios de caracterización y eficiencia de las micorrizas arbusculares de las palmeras Brahea armata S Watson, Chamaerops humilis L, Phoenix canariensis Chabaud y P Dactylifera L Ph.D. thesis, Universidad de Murcia, SpainGoogle Scholar
  38. Dreyer B, Morte A, Pérez-Gilabert M, Honrubia M (2006) Autofluorescence detection of arbuscular mycorrhizal fungal structures in palm roots: an underestimated experimental method. Mycol Res 110:887–897PubMedCrossRefGoogle Scholar
  39. Dreyer B, Morte A, Ángel Lopez J, Honrubia M (2010) Comparative study of mycorrhizal susceptibility and anatomy of four palm species. Mycorrhiza 20:103–115PubMedCrossRefGoogle Scholar
  40. Essahibi A, Benhiba L, Fouad MO, Ait Babram M, Ghoulam C, Qaddoury A (2016) Improved rooting capacity and hardening efficiency of carob (Ceratonia siliqua L.) cuttings using arbuscular mycorrhizal fungi. Arch Biol Sci https://doi.org/10.2298/ABS160307100E
  41. Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM (2013) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 201:42–51PubMedCrossRefGoogle Scholar
  42. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280PubMedPubMedCentralCrossRefGoogle Scholar
  43. Faghire M, Baslam M, Samri S, Meddich A, Goicoechea N, Qaddoury A (2010) Effect of arbuscular mycorrhizal colonization on nutrient statut, water relations and growth of date palm seedlings under water stress. Acta Hortic 882:833–838CrossRefGoogle Scholar
  44. Fatemeh B, Zaynab M (2014) Enhanced rooting of leaf bud cuttings of Schefflera arboricola using mycorrhizal fungi. Annual Res Rev Bio 4(18):2892–2900CrossRefGoogle Scholar
  45. Fortin JA, Plenchette C, Piché Y (2016) Les mycorhizes, l’essor de la nouvelle révolution verte. Editions Quae, Feb 1, 2016 – Mycorhizes – p 184Google Scholar
  46. Fouad MO (2015) Determinants of performances of olive cuttings to overcome the acclimatization and transplantation shocks: role of arbuscular mycorrhizal fungi, Dissertation University Cadi Ayyad of Marrakech, p 157Google Scholar
  47. Fouad MO, Essahibi A, Qaddoury A (2013) Arbuscular mycorrhizal fungi enhanced hardening and post hardening water stress tolerance of Semi-herbaceous olive cuttings. In: 7th International Conference on Mycorrhiza (ICOM7) New Delhi, January, 6–11Google Scholar
  48. Fouad MO, Essahibi A, Benhiba L, Qaddoury A (2014) Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Span J Agric Res 12(3):763–771CrossRefGoogle Scholar
  49. Frank AB (1885) Über die auf Wurzelsymbiose berhende Ernährung gewiser Bäume durch unterirdische Pilze. Berichte der Deutschen Botanishen Gesellschaft 3:128–145.Google Scholar
  50. Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530PubMedCrossRefGoogle Scholar
  51. Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255Google Scholar
  52. Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175CrossRefGoogle Scholar
  53. Habte MY, Zhang C, Schmitt DP (1999) Effectiveness of Glomus species in protecting white clover against nematode damage. Can J Bot 77:135–139Google Scholar
  54. Haddouch M (1997) Situation actuelle et perspective de développement du palmier Dattier au Maroc. Bulletin de liaison du programme Nationale de Transfert de technologie en agriculture No. 31Google Scholar
  55. Hammer EC Nasr H Pallon J Olsson PA, Wallander H (2010) Elemental composition of arbuscular mycorrhizal fungi from with excessive salinity. In: Tryckeriet I E-hyset, Lund. Nutriment Balance and Salinity Stress in Arbuscular Mycorrhizal Fungi, pp 105–122Google Scholar
  56. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  57. Helaly MN, El-Hosieny H (2011) Combined effects between genotypes and salinity on sweet orange during the developmental stages of its micropropagation. Res J Bot 6:38–57CrossRefGoogle Scholar
  58. Helaly MN, El-Hosieny H, Elsheery NI, Hazem Kalaji M (2016) Effect of biofertilizers and putrescine amine on the physiological features and productivity of date palm (Phoenix dactylifera, L.) grown on reclaimed-salinized soil. Trees 30:1149–1161CrossRefGoogle Scholar
  59. Helgason T, Fitter AH (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (phylum Glomeromycota). J Exp Bot 60:2465–2480PubMedCrossRefGoogle Scholar
  60. Hepper C (1985) Isolation and culture of VA mycorrhizal (AM) fungi. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhizal. CRC Press, Boca Raton, pp 95–112Google Scholar
  61. Hodge A, Storer K (2015) Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386:1–19CrossRefGoogle Scholar
  62. Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91PubMedCrossRefGoogle Scholar
  63. Jeffries P, Barea JM (1994) Biogeochemical cycling and arbuscular mycorrhizas in the sustainability of plant–soil systems. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser Verlag, Basel, pp 101–115CrossRefGoogle Scholar
  64. Jeffries P, Barea JM (2000) Arbuscular mycorrhiza-a key component of sustainable plant-soil ecosystems. In: Hock B (ed), The mycota, vol. IX, Fungal associations. Springer-Verlag, New York, pp 95–113Google Scholar
  65. Johnson NC, Tilman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungal communities. Ecology 73:2034–2042CrossRefGoogle Scholar
  66. Joner EJ, Aarle IM, Vosatka M (2000) Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae a review. Plant Soil 226:199–210CrossRefGoogle Scholar
  67. Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379PubMedCrossRefGoogle Scholar
  68. Kabir Z, Koide RT (2000) The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize. Agric Ecosyst Environ 78:167–174CrossRefGoogle Scholar
  69. Kar RK (2011) Plant responses to water stress role of reactive oxygen species. Plant Signal Behav 6:1741–1745PubMedPubMedCentralCrossRefGoogle Scholar
  70. Karthikeyan A, Krishnakumar N (2012) Reforestation of bauxite mine spoils with Eucalyptus tereticornis Sm. seedlings inoculated with arbuscular mycorrhizal fungi. Ann For Res 55:207–216Google Scholar
  71. Kehri HK, Chandra S (1990) Mycorrhizal association in crops under sewage farming. J Indian Bot Soc 69:267–270Google Scholar
  72. Khaliel AS, Abou-Heilah AN (1985) Formation of vesicular-arbuscular mycorrhizae in Phoenix dactylifera L., cultivated in Qassim region, Saudi Arabia. Pak J Bot 17:267–270Google Scholar
  73. Khan AG (2005) Role of soil microbes in the rhizospheres of plant growing on trace metal contaminated soils. J Trace Elem Med Biol 18:355–364PubMedCrossRefGoogle Scholar
  74. Khudairi AK (1969) Mycorrhiza in desert soils. Bioscience 19(7):598–599CrossRefGoogle Scholar
  75. Koske RE, Gemma JN (1992) Fungal reactions to plants prior to mycorrhizal formation. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman & Hall, New YorkGoogle Scholar
  76. Larcher W (1995) Physiological plant ecology, 3rd edn. Springer Verlag, New YorkCrossRefGoogle Scholar
  77. Li B, Ravnskov S, Xie GL, Larsen J (2007) Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhiza-associated bacteria. BioControl 52:863–875CrossRefGoogle Scholar
  78. Liddycoat SM, Greenberg BM, Wolyn DJ (2009) The effect of plant growth promoting rhizobacteria an asparagus seedling and germinating seeds subjected to water stress under greenhouse conditions. Can J Microbiol 55:388–394PubMedCrossRefGoogle Scholar
  79. Lin G, McCormack ML, Guo D (2015) Arbuscular mycorrhizal fungal effects on plant competition and community structure. J Ecol 103:1224–1232CrossRefGoogle Scholar
  80. Liu A, Hamel C, Elmi A, Costa, Ma B, Smith DL (2002) Concentrations of K, Ca and Mg in maize colonized by arbuscular mycorrhizal fungi under field conditions. Can J Soil Sci 82:271–278CrossRefGoogle Scholar
  81. Maas EV (1990) Crop salt tolerance. In: Tanji KK (ed) Agricultural salinity assessment and management ASCE manuals and reports on engineering, no. 71. ASCE, New York, pp 262–304Google Scholar
  82. Maas EV (1993) Testing crops for salinity tolerance. In: Maranville JW, BaIigar BV, Duncan RR, Yohe JM (eds) Proc. workshop on adaptation of plants to soil stresses. INTSORMIL Pub No. 94–2. Univ of NE, Lincoln, pp 234–247Google Scholar
  83. Manaut N, Sanguin H, Ouahmane L, Bressan M, Thioulouse J, Baudoin E et al (2015) Potentialities of ecological engineering strategy based on native arbuscular mycorrhizal community for improving afforestation programs with carob trees in degraded environments. Ecol Eng 79:113–119CrossRefGoogle Scholar
  84. Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579–584CrossRefGoogle Scholar
  85. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefGoogle Scholar
  86. Mohammad MJ, Hamad SR, Malkawi HI (2003) Population of arbuscular mycorrhizal fungi in semiarid environment of Jordan as influenced by biotic and abiotic factors. J Arid Environ 53:409–417CrossRefGoogle Scholar
  87. Morton JB (1990) Species and clones of arbuscular mycorrhizal fungi (Glomales, Zygomycetes): their role in macro- and microevolutionary processes. Mycotaxon 37:493–515Google Scholar
  88. Mosse B (1959) The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular-arbuscular mycorrhiza. Trans Br Mycol Soc 42:273–286CrossRefGoogle Scholar
  89. Muchovej RM (2001) Importance of mycorrhiza for agricultural crops, institute of reduced by drought. Aust J Exp Agric 36:563–569Google Scholar
  90. Munier P (1973) Le palmier dattier. Maisonneuve & Larose, ParisGoogle Scholar
  91. Oihabi A (1991) Doctorat d’Etat, Universite Cadi Ayyad, Faculte des Sciences Semlalia-Marrakech, Maroc, p 110Google Scholar
  92. Ouahmane L, Duponnois R, Hafidi M et al (2006) Plant Ecol 185:123. https://doi.org/10.1007/s11258-005-9089-9 CrossRefGoogle Scholar
  93. Parvin S, Lee OR, Sathiyaraj G, Khorolragcha A, Kim Y, Yang DC (2014) Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defence system. Gene 537:70–78PubMedCrossRefGoogle Scholar
  94. Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. NRC Research Press, OttawaGoogle Scholar
  95. Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotropism. Biosystems 6:153–164PubMedCrossRefGoogle Scholar
  96. Pottosin I, Shabala S (2014) Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signalling. Front Plant Sci 5:1–16CrossRefGoogle Scholar
  97. Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer International Publishing, Cham, pp 1–7Google Scholar
  98. Rasmia SS, Darwesh (2013) Improving growth of date palm plantlets grown under salt. Ann Agric Sci 58:247–256Google Scholar
  99. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the ordovician. Science 289:1920–1921PubMedCrossRefGoogle Scholar
  100. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843PubMedPubMedCentralCrossRefGoogle Scholar
  101. Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498PubMedPubMedCentralCrossRefGoogle Scholar
  102. Rhodes LH, Gerdemann (1980) Nutrient translocations in VA mycorrhizae. In: Pappas CW, Rudolph ED (eds) Cellular interactions in symbiosis and parasitim. The Ohio State University Press, Colombus, p 173Google Scholar
  103. Rilling MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754CrossRefGoogle Scholar
  104. Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress new perspectives for molecular studies. Mycorrhiza 13:309–317PubMedCrossRefGoogle Scholar
  105. Ruiz-Lozano JM, Porcel R, Azcn C, Areca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044PubMedCrossRefGoogle Scholar
  106. Saito M, Marumoto T (2002) Inoculation with arbuscular mycorrhizal fungi: the status quo in Japan and the future prospects. Plant Soil 244:273–279CrossRefGoogle Scholar
  107. Salama I, Messedi D, Ghnaya T, Abdely C (2014) Effet du déficit hydrique sur la croissance et l’accumulation de la proline chez Sesuvium portulacastrum. Revue des Régions Arides 1:234–241Google Scholar
  108. Sané D, Ould Kneyta M, Diouf D, Badiane FA, Sagna M, Borgel A (2005) Growth and development of date palm (Phoenix dactylifera L.) seedlings under drought and salinity stresses. Afr J Biotechnol 4:968–972Google Scholar
  109. Scagel CF (2001) Cultivar specific effects of mycorrhizal fungi on the rooting of miniature rose cuttings. J Environ Hortic 19(1):15–20Google Scholar
  110. Scagel CF (2004) Enhanced rooting of kinnikinnick cuttings using mycorrhizal fungi in rooting substrate. Hort Technol 14(3):355–363Google Scholar
  111. Scagel CF, Reddy K, Armstrong JM (2003) Mycorrhizal fungi in rooting substrate influences the quantity and quality of roots on stem cuttings of Hick’s yew. Hort. Technology 13(1):62–66Google Scholar
  112. Schultz C (2001) Effect of (vesicular-) arbuscular mycorrhiza on survival and post vitro development of micropropagated oil palms (Elaeis guineensis Jacq.), Ph.D. thesis. Universität Gö ttingen, GermanyGoogle Scholar
  113. Selim S, Negrel J, Govaerts C, Gianinazzi S, van Tuinen D (2005) Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from the sorghum mycorrhizosphere. Appl Enivron Microbiol 71:6501–6507CrossRefGoogle Scholar
  114. Selvaraj T, Chelleppan P (2006) Arbuscular mycorrhizae: a diverse personality. Centrail Eur J Agr 7:349–358Google Scholar
  115. Sghir F, Touati J, Chliyeh M, Ouazzani Touhami A, Filali-Maltouf A, El Modafar C, Moukhli A, Oukabl A, Benkirane R, Douira A (2015) Diversity of arbuscular mycorrhizal fungi in the rhizosphere of date palm tree (Phoenix dactylifera) in Tafilalt and Zagora regions (Morocco). Ame J Sci Med Res 1(1):1–11Google Scholar
  116. Sharma A, Batra NG, Sharma H (2014) Physical chemical analysis of the rhizospheric soil of Phoenix dactylifera L. in semi arid regions of Jaipur district. Int Res J Pharm App Sci 4(1):9–15Google Scholar
  117. Siddiqui ZA, Mahmood I, Khan MW (1999) VAM fungi as prospective biocontrol agents for plant parasitic nematodes. In: Bagyaraj DJ, Varma A, Khanna KK, Kehri HK (eds) Modern approaches and innovations in soil management. Rastogi, Meerut, pp 47–58Google Scholar
  118. Simon L, Levesque RC, Lalonde M (1993) Identification of endomycorrhizal fungi colonizing roots by fluorescent single-strand conformation polymorphism polymerase chain reaction. Appl Environ Microbiol 59:4211–4215PubMedPubMedCentralGoogle Scholar
  119. Singh NV, Singh SK, Singh AK, Meshram DT, Suroshe SS, Mishra DC (2012) Arbuscular mycorrhizal fungi (AMF) induced hardening of micropropagated pomegranate (Punica granatum L.) plantlets. Sci Hortic 136:122–127CrossRefGoogle Scholar
  120. Smirnoff N (1995) Antioxidant systems and plant response to the environment. In: Smirnoff N (ed) Environment and plant metabolism: flexibility and acclimation. Bios Scientific Publishers, Oxford, UK, pp 217–243Google Scholar
  121. Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39:221–244CrossRefGoogle Scholar
  122. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San DiegoGoogle Scholar
  123. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, WalthamGoogle Scholar
  124. Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250PubMedCrossRefGoogle Scholar
  125. Soka G, Ritchie M (2014) Arbuscular mycorrhizal symbiosis and ecosystem processes: prospects for future research tropical soils. OJE 4:11–22CrossRefGoogle Scholar
  126. Sturz AV, Carter MR, Johnston HW (1997) A review of plant disease, pathogen interactions and microbial antagonism under conservation tillage in temperate humid agriculture. Soil Tillage Res 41:169–189CrossRefGoogle Scholar
  127. Stutz JC, Copeman R, Martin CA, Morton JB (2000) Patterns of species composition and distribution of arbuscular mycorrhizal fungi in arid regions of southwestern North America and Namibia, Africa. Can J Bot 78:237–245Google Scholar
  128. Subramanian KS, Charest C (1999) Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza 9:69–75CrossRefGoogle Scholar
  129. Tang W, Newton RJ (2005) Polyamines reduced salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regul 46:31–43CrossRefGoogle Scholar
  130. Tao L, Zhiwei Z (2005) Arbuscular mycorrhizas in a hot and arid ecosystem in southwest China. Appl Soil Ecol 29:135–141CrossRefGoogle Scholar
  131. Walker C (1995) In: Verma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, New York, pp 25–29CrossRefGoogle Scholar
  132. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16(5):299–363PubMedCrossRefGoogle Scholar
  133. Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425PubMedCrossRefGoogle Scholar
  134. Yadav K, Aggarwal A, Singh N (2013) Arbuscular mycorrhizal fungi (AMF) induced acclimatization, growth enhancement and colchicine content of micropropagated Gloriosa superba L. plantlets. Ind Crop Prod 45:88–93CrossRefGoogle Scholar
  135. Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in coastal vegetation on Okinawa Island and effect of the isolated fungi on growt of sorghum under salt-treated conditions. Mycorrhiza 18:241–249PubMedCrossRefGoogle Scholar
  136. Yang H, Dai Y, Wang X, Zhang Q, Zhu L, Bian X (2014) Meta-analysis of interactions between arbuscular mycorrhizal fungi and biotic stressors of plants. Sci World J 2014:7. https://doi.org/10.1155/2014/746506 Google Scholar
  137. Yano-Melo AM, Saggin OJ, Lima-Filho JM, Melo LC, Maia LC (1999) Effect of arbuscular mycorrhizal fungi on the acclimatization of micropropagated banana plantlets. Mycorrhiza 9:119–123CrossRefGoogle Scholar
  138. Zai X, Qin P, Wan S, Zhao F, Wang G, Yan D, Zhou J (2007) Effects of arbuscular mycorrhizal fungi on the rooting and growth of beach plum (Prunus maritima) cuttings. J Hortic Sci Biotechnol 82(6):863–866CrossRefGoogle Scholar
  139. Zaid A, de Wet PF, Oihabi A (2002) Diseases and pests of date palm. In: Zaid A (ed) Date palm cultivation FAO paper No. 156, Rome, Italy, pp 227–281Google Scholar
  140. Zarea MJ (2010) Conservation tillage and sustainable agriculture in semi-arid dryland farming. In: Lichtfouse E (ed) Biodiversity, biofuels, agroforestry and conservation agriculture. Springer, Dordrecht, pp 195–232CrossRefGoogle Scholar
  141. Zarea MJ, Goltapeh EM, Karimi N, Varma A (2013) Sustainable agriculture in saline-arid and semiarid by use potential of AM fungi on mitigates NaCl effects. In: Goltapeh EM et al (eds) Fungi as bioremediators. Springer-Verlag, Berlin/Heidelberg, pp 347–369CrossRefGoogle Scholar
  142. Zegaye F, Khalid A, Hasnaoui A, Serghini HC, El Amrani A (2012) Ectomycorrhization of date palm and carob plants. Global J Sci Front Res Bio Sci 12(8):13–20Google Scholar
  143. Zhang T, Tian CY, Sun Y, Bai DS, Feng G (2012) Dynamics of arbuscular mycorrhizal fungi associated with desert ephemeral plants in Gurbantunggut. Desert. J Arid Land 4(1):43–51CrossRefGoogle Scholar
  144. Zhao ZW, Qin XZ, Li XW, Cheng LZ, Sha T, Wang GH (2001) Arbuscular mycorrhizal status of plants and the spore density of arbuscular mycorrhizal fungi in the tropical rain forest of Xishuangbanna, southwest China. Mycorrhiza 11:159–162PubMedCrossRefGoogle Scholar
  145. Zhu JK, Chinnusamy V, Jagendorf A (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Plant Biotechnology & Agrophysiology of Symbiosis, Department of Biology, FSTUniversity Cadi AyyadMarrakeshMorocco

Personalised recommendations