Advertisement

Fungal Bioremediation as a Tool for Polluted Agricultural Soils

  • Sandra Pérez Álvarez
  • Marco Antonio Magallanes Tapia
  • Bernardo Nayar Debora Duarte
  • María Esther González Vega
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Soils can be contaminated with heavy metal by anthropogenic activities, and they do not go through a process of chemical or biological (microbial) degradation, so their total concentration in soils persists for a long time after their introduction. Conventional method to remove such contaminants is costly and inefficient; however, the bioremediation is cost-effective, efficient, and environmentally friendly alternative. The properties of some genera of fungi, such as Trichoderma, Beauveria, and Paecilomyces, to absorb and accumulate heavy metals give a great potential for cheap alternative method to remove heavy metal from soil. For that reason, the aim of this chapter is to discuss about the heavy metal removal from contaminated agricultural soil using bioremediation by fungi Trichoderma sp., Beauveria bassiana (Bals.) Vuill., and Paecilomyces lilacinus (Thom) Samson.

Keywords

Bioremediation Contamination Environment Fungi Heavy metals 

References

  1. Abbas SAU, Khan MJ, Tariqjan M, Khan NU, Arif M, Parveen S (2011) The effect of using waste water on tomato. Pak J Bot 43:1Google Scholar
  2. Abou-Shanab RAI, Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367CrossRefPubMedGoogle Scholar
  3. Adams P, De-Leij FAAM, Lynch JM (2007) Trichoderma harzianum Rifai 1295–22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microb Ecol 54:306–313CrossRefPubMedGoogle Scholar
  4. Agarwal SK (1998) Environmental biotechnology. APH Publishing Corporation, New Delhi, pp 267–289Google Scholar
  5. Anastasi A, Tigini V, Varese GC (2013) Fungi as bioremediators. In: The bioremediation potential of different Ecophysiological groups of fungi. Springer, Berlin, pp 29–49Google Scholar
  6. Aravinna P, Priyantha N, Pitawala A, Yatigammana SK (2017) Use pattern of pesticides and their predicted mobility into shallow groundwater and surface water bodies of paddy lands in Mahaweli river basin in Sri Lanka. J Environ Sci Health B 52:37–47CrossRefPubMedGoogle Scholar
  7. Archana A, Jaitlty AK (2015) Mycoremediation: utilization of fungi for reclamation of heavy metals as their optimum remediation conditions. Biolife 3(1):77–106Google Scholar
  8. Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto JC, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123(4):247–260CrossRefGoogle Scholar
  9. Baldrian P, Gabriel J (2002) Intraspecific variability in growth response to cadmium of the wood-rotting fungus Piptoporus betulinus. Mycologia 94:428–436CrossRefPubMedGoogle Scholar
  10. Banik S, Das KC, Islam MS, Salimullah M (2014) Recent advancements and challenges in microbial bioremediation of heavy metals contamination. JSM Biotechnol Bioeng 2(1):1035Google Scholar
  11. Bayoumi HEAF, Patkó I (2010) Relationship between environmental impacts and modern agriculture. Environmental Protection Engineering Institute, Óbuda University, e-Bulletin 1,1Google Scholar
  12. Blaudez D, Botton B, Chalot M (2000) Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology 146:1109–1117CrossRefPubMedGoogle Scholar
  13. Bourne M, Nicotra AB, Colloff MJ, Cunningham SA (2008) Effect of soil biota on growth and allocation by Eucalyptus microcarpa. Plant Soil 305:145CrossRefGoogle Scholar
  14. Bozkurt H, Celekli A, Yavuzatmaca M (2010) An eco-friendly process: predictive modelling of copper adsorption from aqueous solution on Spirulina platensis. J Hazard Mater 173:123–129CrossRefPubMedGoogle Scholar
  15. Carneiro RMDG (1992) Princípios e tendências de controle biológico de nematóides com fungos nematófagos. Pesq Agrop Brasileira 27:113–121Google Scholar
  16. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharp-ley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568CrossRefGoogle Scholar
  17. Celekli A, Bozkurt H (2011) Biosorption of cadmium and nickel ions using Spirulina platensis: kinetic and equilibrium studies. Desalination 275:141–147CrossRefGoogle Scholar
  18. Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212CrossRefGoogle Scholar
  19. Domsch KH, Gams W (1980) Compendium of soil fungi. Academic Press, New York, pp 529–532Google Scholar
  20. Doelman P, Jansen E, Michels M, van Til M (1994) Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Bioi Fertil Soils 17:177–184Google Scholar
  21. Dugal S, Gangawane M (2012) Metal tolerance and potential of Penicillium species for use in mycoremediation. J Chem Pharm Res 4:2362–2366Google Scholar
  22. Edmondson WT (1995) Eutrophication. Encyclopedia of environmental biology, vol 1. Academic Press, New York, pp 697–703Google Scholar
  23. EEA (European Environment Agency) (2003) Europe’s environment: the third assessment. State of Environment report No 1/2003. CopenhagenGoogle Scholar
  24. EPA, Environmental protection Agency (2016) Climate change indicators in the United States: global greenhouse gas emissions www.epa.gov/climate-indicators – Updated August 2016
  25. FAO (2014) Soil degradation. Accessed on (19/11/2014) Available: www.fao.org/soils-portal/soil-degradation-restoration/en
  26. FAO (Food and Agriculture Organization of the United Nations) (2009) How to feed the world in 2050. FAO, Rome. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf Google Scholar
  27. Fomina M, Charnock J, Bowen AD, Gadd GM (2007) X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Environ Microbiol 9:308–321CrossRefPubMedGoogle Scholar
  28. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153–226CrossRefGoogle Scholar
  29. Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–539CrossRefPubMedGoogle Scholar
  30. Goblenz A, Wolf K, Bauda P (1994) The role of glutathione biosynthesis in heavy metal resistance in the fission yeast Schizosaccharomyces pombe. FEMS Microbiol Rev 14:303–308CrossRefGoogle Scholar
  31. Gola D, Dey P, Bhattacharya A, Mishra A, Malik A, Namburath M, Ahammad SZ (2016) Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresour Technol 218:388–396CrossRefPubMedGoogle Scholar
  32. Gupta SC, Leathers TD, Wicklow DT (1993) Hydrolytic enzymes secreted by Paecilomyces lilacinus cultured on sclerotia of Aspergillus flavus. Appl Microbiol Biotechnol 39:99–103CrossRefGoogle Scholar
  33. Gupta RP, Kalia A, Kapoor S (2007) Bioinoculants: a step towards sustainable agriculture. New India Publishing Agency, New Delhi, p 306Google Scholar
  34. Hamilton PA, Shedlock RJ (1992) Are fertilizers and pesticides in the ground water?; U.S. Geological Survey: Reston, VA; Circular 1080Google Scholar
  35. van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310CrossRefPubMedGoogle Scholar
  36. Hess A, Zarda B, Hahn D, Hanner A, Stax D (1997) In situ analysis of denitrifying toluene and m-xylene degrading bacteria in a diesel fuel contaminated laboratory aquifer column. Appl Environ Microbiol 63:2136–2141PubMedPubMedCentralGoogle Scholar
  37. Howarth RW (2006) Atmospheric deposition and nitrogen pollution in coastal marine ecosystems. In: Visgilio GR, Whitelaw DM (eds) Acid in the environment: lessons learned and future prospects. Springer, NY, pp 97–116Google Scholar
  38. ILO (International Labour Organization) (2011) Safety and health in agriculture, isbn: 978-92-2-124971-9. Retrieved Dec 2016Google Scholar
  39. Jantschi L, Suciu I, Cosma C, Todica M, Bolboaca SD (2008) Analysis of soil heavy metal pollution and pattern in central Transylvania. Int J Mol Sci 9:434CrossRefPubMedPubMedCentralGoogle Scholar
  40. Joseph E, Cario S, Simon A, Wörle M, Mazzeo R, Junier P, Job D (2012) Protection of metal artifacts with the formation of metal–oxalates complexes by Beauveria bassiana. Front Microbiol 2:270CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kameo S, Iwahashi H, Kojima Y, Satoh H (2000) Induction of metallothioneins in the heavy metal resistant fungus Beauveria bassiana exposed to copper or cadmium. Analysis 28(5):382–385Google Scholar
  42. Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28(1):61–69CrossRefPubMedGoogle Scholar
  43. Kojima Y, Berger C, Vallee BL, Kägi JHR (1976) Amino-acid sequence of equine renal metallothionein-1B. Proc Nat Acad Sci USA 73:3413–3417CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kumar R, Bishnoi NR, Garima K (2008) Biosorption of chromium (VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem Eng J 135:202–208CrossRefGoogle Scholar
  45. Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079–1093Google Scholar
  46. Li F, Tan TC (1994) Monitoring BOD in the presence of heavy metal ions using poly (4-vinylpyr-idine) coated microbial sensor. Biosens Bioelectron 9:445–455CrossRefGoogle Scholar
  47. Loebenstein G, Thottappilly G (2007) Agricultural research management. Springer, DordrechtCrossRefGoogle Scholar
  48. MA (Millennium Ecosystem Assessment) (2005) Ecosystem services and human well-being: wetlands and water synthesis. World Resources Institute, Washington D.C. 68 pp. Web site: http://www.millenniumassessment.org/en/index.aspx)
  49. Mann H (1990) Removal and recovery of heavy metals by biosorption. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Raton, pp 93–137Google Scholar
  50. Mastouri F, Bjorkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221CrossRefPubMedGoogle Scholar
  51. Maurya NS, Mittal AK, Peter C, Elmar R (2006) Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength and pH. Bioresour Technol 97:512–521CrossRefPubMedGoogle Scholar
  52. Mohsenzadeh F, Shahrokhi F (2014) Biological removing of cadmium from contaminated media by fungal biomass of Trichoderma species. J Environ Health Sci Eng 12:102–109CrossRefPubMedPubMedCentralGoogle Scholar
  53. Montanarella L, Vargas R (2012) Global governance of soil resources as a necessary condition for sustainable development. Curr Opin Environ Sustain 4:559–564CrossRefGoogle Scholar
  54. Muraleedharan TR, Iyengar L, Venkobachar C (1991) Biosorption: an attractive alternative for metal removal and recovery. Curr Sci 61:379–385Google Scholar
  55. Nordberg GF, Nordberg M, Piscator M, Vesterberg O (1972) Separation of two forms of rabbit metallothionein by isoelectric focusing. Biochem J 126(3):491–498CrossRefPubMedPubMedCentralGoogle Scholar
  56. OECD (2012) Water quality and agriculture – meeting the policy challenge. OECD studies on water. OECD Publishing, ParisGoogle Scholar
  57. Olesen JE (2006) Climate change as a driver for European agriculture. SCAR – Foresight in the field of agricultural research in Europe. https://ec.europa.eu/research/agriculture/scar/pdf/scar_foresight_climate_change_en.pdf Google Scholar
  58. Önder M, Kahraman A (2010) Global climate changes and their effects on field crops. In: 10th international multidisciplinary geoconference SGEM, Conference Proceedings, 20–26 June 2010, Bulgaria. 2010, vol. II, pp. 589–592Google Scholar
  59. Önder M, Ceyhan E, Kahraman A (2011) Effects of agricultural practices on environmental. In: International Conference on Biology, Environment and Chemistry (ICBEC), vol. 24 © IACSIT Press, SingaporeGoogle Scholar
  60. Pantelica A, Cercasov V, Steinnes E, Bode P, Wolterbeek B (2008) Investigation by INAA, XRF, ICPMSnand PIXE of Air Pollution Levels at Galati (Siderurgical Site), In: Book of abstracts, 4th Nat. Conf. of Applied Physics (NCAP4), Galati, Romania, September 2008 (A. Ene – Ed.) Galati University Press, Galati, RomaniaGoogle Scholar
  61. Purchase D, Scholes LNL, Revitt DM, Shutes RBE (2009) Effects of temperature on metal tolerance and the accumulation of Zn and Pb by metal-tolerant fungi isolated from urban runoff treatment wetlands. J Appl Microbiol 106:1163–1174CrossRefPubMedGoogle Scholar
  62. Rhodes CJ (2014) Mycoremediation (bioremediation with fungi)-growing mushrooms to clean the earth. Chem Speciat Bioavailab 26(3):196–198CrossRefGoogle Scholar
  63. Rial-Otero R, Cancho-Grande B, Arias-Estévez M, López-Periago E, Simal-Gándara J (2003) Procedure for the measurement of soil inputs of plant-protection agents washed off through vineyard canopy by rainfalls. J Agric Food Chem 51(17):5041–5046CrossRefPubMedGoogle Scholar
  64. Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rombach MC, Aguda RM, Shepard BM, Roberts DW (1986) Infection of rice brown plant hopper, Nilaparvata lugens (Homoptera: Delphacidae), by field application of entomopathogenic hyphomycetes (Deuteromycotina). Environ Entomol 15:1070–1073CrossRefGoogle Scholar
  66. Sahu A, Manna MC, Mandal A, Subba Rao A, Thakur J (2012) Exploring bioaccumulation efficacy of Trichoderma viride: an alternative bioremediation of cadmium and lead. Natl Acad Sci Lett 35(4):299–302CrossRefGoogle Scholar
  67. Samson RA (1974) Paecilomyces and some allied hyphomycetes. In: Studies in mycology, vol 6. Centraal bureau voor Schimmelcultures, BaarnGoogle Scholar
  68. Shilev S, Babrikov T (2005) Heavy metal accumulation in Solanaceae-plants grown at contaminated area. In: Gruev B, Nikolova M Donev A (eds) Proceedings of the Balkan scientific conference of biology in Plovdiv (Bulgaria) from 19th till 21st of May 2005. pp. 452–460Google Scholar
  69. Sietmann R, Gesell M, Hammer E, Schauer F (2006) Oxidative ring cleavage of low chlorinated biphenyl derivatives by fungi leads to the formation of chlorinated lactone derivatives. Chemosphere 64:672–685CrossRefPubMedGoogle Scholar
  70. Singh M, Srivastavar PK, Vermar PC, Kharwar RN, Singhi N, Tripathi RD (2015) Soil fungi Mycoremediation of arsenic pollution in agriculture soils. J Appl Microbiol 119:1278–1290CrossRefPubMedGoogle Scholar
  71. Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409(12):2430–2442CrossRefPubMedGoogle Scholar
  72. Strong PJ, Burgess JE (2008) Treatment methods for wine-related ad distillery wastewaters: a review. Biorem J 12:7087CrossRefGoogle Scholar
  73. Tang CY, Criddle QS, CS F, Leckie JO (2007) Effect of flux (transmembrane pressure) and membranes properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing waste water. J Environ Sci Technol 41:2008–2014CrossRefGoogle Scholar
  74. Tanous C, Chambellon E, Bars DL, Delespaul G, Yvon M (2006) Glutamate dehydrogenase activity can be transmitted naturally to Lactococcus lactis strains to stimulate amino acid conversion to aroma compounds. Appl Environ Microbiol 72:1402–1409CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tixier C, Sancelme M, Bonnemoy F, Cuer A, Veschambre H (2001) Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity, and biotransformation. Environ Toxicol Chem 20(7):1381–1389CrossRefPubMedGoogle Scholar
  76. Tomko J, Backor M, Stofko M (2006) Biosorption of heavy metals by dry fungi biomass. Acta Metall Slovaca 12:447–451Google Scholar
  77. Tripathi P, Singh PC, Mishra A, Chauhan PS, Dwivedi S, Bais RT, Tripathi RD (2013) Trichoderma: a potential bioremediator for environmental clean-up. Clean Techn Environ Policy 15:541–550. https://doi.org/10.1007/s10098-012-0553-7 CrossRefGoogle Scholar
  78. Vankar PS, Bajpai D (2008) Phyto-remediation of Chrome-VI of tannery effluent by Trichoderma species. Desalination 222:255–262Google Scholar
  79. Vinod PN, Chandramouli PN, Koch M (2015) Estimation of nitrate leaching in groundwater in an agriculturally used area in the state Karnataka, India, using existing model and GIS. Aquat Procedia 4:1047–1053CrossRefGoogle Scholar
  80. Vollenweider RA (1968) Scientific fundamentals of lake and stream eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors. (Technical Report DAS/ DSI/68.27). OECD, ParisGoogle Scholar
  81. Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Nat Acad Sci USA 111:5266–5270CrossRefPubMedPubMedCentralGoogle Scholar
  82. Walls M (2006) Agriculture and environment. The Standing Committee on Agricultural Research (SCAR) Foresight Group. 22 strani. http://ec.europa.eu/research/agriculture/scar/pdf/scar_foresight_environment_en.pdf
  83. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226CrossRefPubMedGoogle Scholar
  84. Wang J, Zhan X, Ding D, Zhou D (2001) Bioadsorption of lead(II) from aqueous solution by fungal biomass of Aspergillus niger. J Biotechnol 87:273–277CrossRefGoogle Scholar
  85. Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633CrossRefPubMedGoogle Scholar
  86. Wong SC, Li XD, Zhang GQ, Min YS (2002) Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ Pollut 119:33–44CrossRefPubMedGoogle Scholar
  87. Wood JM, Wang HK (1983) Microbial resistance to heavy metals. Environ Sci Technol 17:582–590CrossRefGoogle Scholar
  88. WRI (World Resources Institute) 2015. Climate Analysis Indicators Tool (CAIT) 2.0: WRI’s climate data explorer. Accessed Dec 2015. http://cait.wri.org
  89. Wunch KG, Alworth WL, Bennett JW (1999) Mineralization of benzo[a]pyrene by Marasmiellus troyanus, a mushroom isolated from a toxic waste site. Microbiol Res 154:75–79CrossRefPubMedGoogle Scholar
  90. Xia L, Xu X, Zhu W, Huang Q, Chen W (2015) A comparative study on the biosorption of Cd2+ onto Paecilomyces lilacinus XLA and Mucoromycote sp. XLC. Int J Mol Sci 16:15670–15687CrossRefPubMedPubMedCentralGoogle Scholar
  91. Xu X, Xia L, Huang Q, JD G, Chen W (2012) Biosorption of cadmium by a metal-resistant filamentous fungus isolated from chicken manure compost. Environ Technol 33:1661–1670CrossRefPubMedGoogle Scholar
  92. Yazdani M, Yap CK, Abdullah F, Tan SG (2009) Trichoderma atroviride as a bioremediator of Cu pollution: an in vitro study. Toxicol Environ Chem 91(7):1305–1314CrossRefGoogle Scholar
  93. Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98:2557–2561CrossRefPubMedGoogle Scholar
  94. Zeng X, Tang J, Yin H, Liu X, Jiang P, Liu H (2010) Isolation, identification and cadmium adsorption of a high cadmium-resistant Paecilomyces lilacinus. Afr J Biotechnol 9(39):6525–6533Google Scholar
  95. Zhao KL, Liu XM, Zhang WW, JM X, Wang F (2011) Spatial dependence and bioavailability of metal fractions in paddy fields on metal concentrations in rice grain at a regional scale. J Soil Sed 11:1165–1177CrossRefGoogle Scholar
  96. Zhu YG, Meharg AA (2015) Protecting global soil resource for ecosystem services. Ecosyst Health Sustain 1(3):11CrossRefGoogle Scholar
  97. Zou CS, Mo MH, YQ G, Zhou JP, Zhang KQ (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem 39:2371–2379CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sandra Pérez Álvarez
    • 1
  • Marco Antonio Magallanes Tapia
    • 1
  • Bernardo Nayar Debora Duarte
    • 1
  • María Esther González Vega
    • 2
  1. 1.Instituto Politécnico Nacional, CIIDIR-IPN, Unidad Sinaloa, Departamento de Biotecnología AgrícolaGuasaveMéxico
  2. 2.Instituto Nacional de Ciencias Agrícolas (INCA)San José de las LajasCuba

Personalised recommendations