Advertisement

Interactive Data Visualization Using Dimensionality Reduction and Dissimilarity-Based Representations

  • D. F. Peña-Unigarro
  • P. Rosero-Montalvo
  • E. J. Revelo-Fuelagán
  • J. A. Castro-Silva
  • J. C. Alvarado-Pérez
  • R. Therón
  • C. M. Ortega-Bustamante
  • D. H. Peluffo-Ordóñez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10585)

Abstract

This work describes a new model for interactive data visualization followed from a dimensionality-reduction (DR)-based approach. Particularly, the mixture of the resulting spaces of DR methods is considered, which is carried out by a weighted sum. For the sake of user interaction, corresponding weighting factors are given via an intuitive color-based interface. Also, to depict the DR outcomes while showing information about the input high-dimensional data space, the low-dimensional representations reached by the mixture is conveyed using scatter plots enhanced with an interactive data-driven visualization. In this connection, a constrained dissimilarity approach define the graph to be drawn on the scatter plot.

Keywords

Data visualization Dimensionality reduction Pairwise dissimilarity 

Notes

Acknowledgments

This work is supported by the “Grupo de Investigación en Ingeniería Eléctrica y Electrónica - GIIEE” from Universidad de Nariño. As well, the authors acknowledge to the research project “Desarrollo de una metodología de visualización interactiva y eficaz de información en Big Data” supported by Agreement No. 180 November 1st, 2016 by VIPRI from Universidad de Nariño, as well as Universidad Técnica del Norte – Ecuador.

References

  1. 1.
    Peluffo-Ordóñez, D.H., Lee, J.A., Verleysen, M.: Recent methods for dimensionality reduction: a brief comparative analysis. In: European Symposium on Artificial Neural Networks (ESANN). Citeseer (2014)Google Scholar
  2. 2.
    Peluffo-Ordóñez, D.H., Lee, J.A., Verleysen, M.: Short review of dimensionality reduction methods based on stochastic neighbour embedding. In: Villmann, T., Schleif, F.-M., Kaden, M., Lange, M. (eds.) Advances in Self-Organizing Maps and Learning Vector Quantization. AISC, vol. 295, pp. 65–74. Springer, Cham (2014). doi: 10.1007/978-3-319-07695-9_6 CrossRefGoogle Scholar
  3. 3.
    Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer Science & Business Media, New York (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    Borg, I.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (2005)zbMATHGoogle Scholar
  5. 5.
    Ward, M., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations, Techniques, and Applications. AK Peters Ltd., Natick (2010)zbMATHGoogle Scholar
  6. 6.
    Salazar-Castro, J., Rosas-Narváez, Y., Pantoja, A., Alvarado-Pérez, J.C., Peluffo-Ordóñez, D.H.: Interactive interface for efficient data visualization via a geometric approach. In: 2015 20th Symposium on Signal Processing, Images and Computer Vision (STSIVA), pp. 1–6. IEEE (2015)Google Scholar
  7. 7.
    Peluffo-Ordónez, D.H., Alvarado-Pérez, J.C., Lee, J.A., Verleysen, M.: Geometrical homotopy for data visualization. In: European Symposium on Artificial Neural Networks (ESANN 2015). Computational Intelligence and Machine Learning (2015)Google Scholar
  8. 8.
    Peña-ünigarro, D.F., Salazar-Castro, J.A., Peluffo-Ordóñez, D.H., Rosero-Montalvo, P.D., Oña-Rocha, O.R., Isaza, A.A., Alvarado-Perez, J.C., Theron, R.: Interactive visualization methodology of high-dimensional data with a color-based model for dimensionality reduction. In: 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), pp. 1–7. IEEE (2016)Google Scholar
  9. 9.
    Lee, J.A., Renard, E., Bernard, G., Dupont, P., Verleysen, M.: Type 1 and 2 mixtures of kullback-leibler divergences as cost functions in dimensionality reduction based on similarity preservation. Neurocomputing 112, 92–108 (2013)CrossRefGoogle Scholar
  10. 10.
    Sedlmair, M., Munzner, T., Tory, M.: Empirical guidance on scatterplot and dimension reduction technique choices. IEEE Trans. Visual. Comput. Graphics 19, 2634–2643 (2013)CrossRefGoogle Scholar
  11. 11.
    Sedlmair, M., Aupetit, M.: Data-driven evaluation of visual quality measures. In: Computer Graphics Forum, vol. 34, pp. 201–210. Wiley Online Library (2015)Google Scholar
  12. 12.
    Hackeling, G.: Mastering Machine Learning with scikit-learn. Packt Publishing Ltd., Birmingham (2014)Google Scholar
  13. 13.
    Ware, C.: Information Visualization: Perception for Design. Elsevier, Amsterdam (2012)Google Scholar
  14. 14.
    Meyer, M., Barr, A., Lee, H., Desbrun, M.: Generalized barycentric coordinates on irregular polygons. J. Graph. Tools 7, 13–22 (2002)CrossRefzbMATHGoogle Scholar
  15. 15.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)CrossRefGoogle Scholar
  16. 16.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • D. F. Peña-Unigarro
    • 1
  • P. Rosero-Montalvo
    • 2
    • 3
  • E. J. Revelo-Fuelagán
    • 1
  • J. A. Castro-Silva
    • 4
  • J. C. Alvarado-Pérez
    • 5
    • 6
  • R. Therón
    • 6
  • C. M. Ortega-Bustamante
    • 2
  • D. H. Peluffo-Ordóñez
    • 2
    • 5
  1. 1.Universidad de NariñoPastoColombia
  2. 2.Universidad Técnica del NorteIbarraEcuador
  3. 3.Instituto Tecnológico Superior 17 de JulioIbarraEcuador
  4. 4.Universidad SurcolombianaNeivaColombia
  5. 5.Coorporación Universitaria Autónoma de NariñoPastoColombia
  6. 6.Universidad de SalamancaSalamancaSpain

Personalised recommendations