Skip to main content

UK - Means Clustering for Uncertain Time Series Based on ULDTW Distance

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2017 (IDEAL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10585))

  • 2108 Accesses

Abstract

The probability density function represents the uncertainty of time series at each time point. In this paper, based on probability density function, we adopt the ULDTW distance for uncertain time series and apply it to the traditional UK-Means clustering. Combining the property that ULDTW distance has a one-to-many correspondence between time points in the matching process, we propose a 1ToNCenter calculation method replacing the traditional mean cluster-center calculation method to improve the accuracy of clustering results. Experiments show that the Adjusted Rand Index (ARI) of UKMeansULDTW clustering results have an obviously higher accuracy than the existing UK-Means algorithms in the high dimensional uncertain time series cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zuo, Y., Liu, G., Yue, X., Wang, W., Wu, H.: Similarity matching over uncertain time series. In: Seventh International Conference on Computational Intelligence and Security, pp. 1357–1361 (2011)

    Google Scholar 

  2. Izakian, H., Pedrycz, W.: Anomaly detection and characterization in spatial time series data: a cluster-centric approach. IEEE Trans. Fuzzy Syst. 22(6), 1612–1624 (2014)

    Article  Google Scholar 

  3. Paparrizos, J., Gravano, L.: k-Shape: efficient and accurate clustering of time series. ACM SIGMOD Rec. 45(1), 69–76 (2016)

    Article  Google Scholar 

  4. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering - a decade review. Inf. Syst. 53(C), 16–38 (2015)

    Article  Google Scholar 

  5. Izakian, H., Pedrycz, W., Jamal, I.: Fuzzy clustering of time series data using dynamic time warping distance. Eng. Appl. Artif. Intell. 39, 235–244 (2015)

    Article  Google Scholar 

  6. Menéndez, H.D., Barrero, D.F., Camacho, D.: A co-evolutionary multi-objective approach for a k-adaptive graph-based clustering algorithm. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2724–2731. IEEE (2014)

    Google Scholar 

  7. Xu, L., Hu, Q., Hung, E., Chen, B., Tan, X., Liao, C.: Large margin clustering on uncertain data by considering probability distribution similarity. Neurocomputing 158(C), 81–89 (2015)

    Article  Google Scholar 

  8. Qin, B., Xia, Y., Wang, S., Xiaoyong, D.: A novel bayesian classification for uncertain data. Knowl.-Based Syst. 24(8), 1151–1158 (2011)

    Article  Google Scholar 

  9. Menéndez, H.D., Otero, F.E.B., Camacho, D.: Medoid-based clustering using ant colony optimization. Swarm Intell. 10(2), 123–145 (2016)

    Article  Google Scholar 

  10. Menéndez, H.D., Otero, F.E.B., Camacho, D.: MACOC: a medoid-based ACO clustering algorithm. In: Dorigo, M., Birattari, M., Garnier, S., Hamann, H., Montes de Oca, M., Solnon, C., Stützle, T. (eds.) ANTS 2014. LNCS, vol. 8667, pp. 122–133. Springer, Cham (2014). doi:10.1007/978-3-319-09952-1_11

    Google Scholar 

  11. Bello-Orgaz, G., Menéndez, H.D., Camacho, D.: Adaptive k-means algorithm for overlapped graph clustering. Int. J. Neural Syst. 22(05), 1250018 (2012)

    Article  Google Scholar 

  12. Menéndez, H., Camacho, D.: A genetic graph-based clustering algorithm. In: Yin, H., Costa, J.A.F., Barreto, G. (eds.) IDEAL 2012. LNCS, vol. 7435, pp. 216–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32639-4_27

    Chapter  Google Scholar 

  13. Menendez, H.D., Barrero, D.F., Camacho, D.: A genetic graph-based approach for partitional clustering. Int. J. Neural Syst. 24(03), 1430008 (2014)

    Article  Google Scholar 

  14. Chau, M., Cheng, R., Kao, B., Ng, J.: Uncertain data mining: an example in clustering location data. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 199–204. Springer, Heidelberg (2006). doi:10.1007/11731139_24

    Chapter  Google Scholar 

  15. Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G.: The UCR time series classification archive (2015). www.cs.ucr.edu/~eamonn/time_series_data

  16. Qu, J., Shao, Z., Liu, X.: Mixed PSO clustering algorithm using point symmetry distance. J. Comput. Inf. Syst. 20, 53–65 (2010)

    Article  Google Scholar 

  17. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7(3), 358–386 (2005)

    Article  Google Scholar 

  18. Petitjean, F., Ketterlin, A., Gançarski, P.: A global averaging method for dynamic time warping, with applications to clustering. Patt. Recogn. 44(3), 678–693 (2011)

    Article  MATH  Google Scholar 

  19. Zhang, S., Wong, H.-S., Shen, Y.: Generalized adjusted rand indices for cluster ensembles. Patt. Recogn. 45(6), 2214–2226 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China (61370075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhu, X., Ma, Z., Tang, Q. (2017). UK - Means Clustering for Uncertain Time Series Based on ULDTW Distance. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2017. IDEAL 2017. Lecture Notes in Computer Science(), vol 10585. Springer, Cham. https://doi.org/10.1007/978-3-319-68935-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68935-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68934-0

  • Online ISBN: 978-3-319-68935-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics