Skip to main content

Numerical Simulation on Rotating Detonation Engine: Effects of Higher-Order Scheme

  • Chapter
  • First Online:
Detonation Control for Propulsion

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 2136 Accesses

Abstract

The implementation and simulations of the robust weighted compact nonlinear scheme (RWCNS) for the two-dimensional rotating detonation engine are performed using the detailed chemistry model. The comparison of the MUSCL and the 5th-order RWCNS (WCNS5MN) indicates that the shock front and the contact surface for the WCNS5MN can be improved with the better resolution than those for the MUSCL and that both rotating velocities are approximately 97% of the CJ value. I sp for the WCNS5MN is approximately 5 s larger than I sp for the MUSCL because the mass flow rates for the WCNS5MN are 2–4% smaller than those for the MUSCL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Araki, T., Yoshida, K., Morii, Y., Tsuboi, N., & Hayashi, A. K. (2016). Numerical analyses on ethylene/oxygen detonation with multistep chemical reaction mechanisms: Grid resolution and chemical reaction model. Combustion Science and Technology, 188(3), 346–369.

    Article  Google Scholar 

  • Asahara, A., Hayashi, A. K., Yamada, E., & Tsuboi, N. (2012). Generation and dynamics of subtransverse wave of cylindrical detonation. Combustion Science and Technology, 184, 1568–1590.

    Article  Google Scholar 

  • Batten, P., Clarke, N., Lambert, C., & Causon, D. M. (1997). On the choice of wavespeeds for the HLLC Riemann solver. SIAM Journal on Scientific Computing, 18, 1553–1570.

    Article  MathSciNet  MATH  Google Scholar 

  • Bykovskii, F. A., Zhdan, S. A., & Vedernikov, E. F. (2006). Continuous spin detonations. Journal of Propulsion and Power, 22(6), 1204–1216.

    Article  Google Scholar 

  • Davis, S. G., Joshi, A. V., Wang, H., & Egolfopoulos, F. (2005). An optimized kinetic model of H2/CO combustion. Proceedings of the Combustion Institute, 30(1), 1283–1292.

    Article  Google Scholar 

  • Deng, X. G., & Zhang, H. (2000). Developing high-order weighted compact nonlinear schemes. Journal of Computational Physics, 165, 22–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Einfeldt, B. (1988). On Godunov-type methods for gas dynamics. SIAM Journal on Numerical Analysis, 25, 294–318.

    Article  MathSciNet  MATH  Google Scholar 

  • Eto, K., Tsuboi, N., & Hayashi, A. K. (2005). Numerical study on three-dimensional C-J detonation waves: Detailed propagating mechanism and existence of OH radical. Proceedings of the Combustion Institute, 30, 1907–1913.

    Article  Google Scholar 

  • Eto, S., Tsuboi, N., Takayuki, K., & Hayashi, A. K. (2016). Three-dimensional numerical simulation of a rotating detonation engine: Effects of the throat of a converging-diverging nozzle on engine performance. Combustion Science and Technology, 188(11–12), 2105–2116.

    Article  Google Scholar 

  • Godunov, S. K. (1959). A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik, 43, 271–306.

    MATH  Google Scholar 

  • Gordon, S., & McBride, J.B. (1971). Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouget detonations. NASA SP-273.

    Google Scholar 

  • Gottlieb, S., & Shu, C. W. (1998). Total variation diminishing Runge-Kutta schemes. Mathematics of Computation, 67, 73–85.

    Article  MathSciNet  MATH  Google Scholar 

  • Henrick, A. K., Aslam, T. D., & Powers, J. M. (2006). Simulations of pulsating one-dimensional detonations with true fifth order accuracy. Journal of Computational Physics, 213, 311–329.

    Article  MathSciNet  MATH  Google Scholar 

  • Hishida, M., Fujiwara, T., & Wolanski, P. (2009). Fundamentals of rotating detonations. Shock Waves, 19(1), 1–10.

    Article  MATH  Google Scholar 

  • Hu, X. Y., Zhang, D. L., Khoo, B. C., & Jiang, Z. L. (2005). The structure and evolution of a twodimensional H2/O2/Ar cellular detonation. Shock Waves, 14, 37–44.

    Article  Google Scholar 

  • Iida, R., Asahara, M., Tsuboi, N., Hayashi, A. K., & Nonomura, T. (2014). Implementation of a robust weighted compact nonlinear scheme for modeling of hydrogen/air detonation. Combustion Science and Technology, 186(10–11), 1736–1757.

    Article  Google Scholar 

  • Jiang, G. S., & Shu, C. W. (1996). Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126, 200–212.

    Article  MathSciNet  MATH  Google Scholar 

  • Konnov, A. A. (2008). Remaining uncertainties in the kinetic mechanism of hydrogen combustion. Combustion and Flame, 152(4), 507–528.

    Article  Google Scholar 

  • Korobenikov, V. P., Levin, V. A., Markov, V. V., & Chernyi, G. G. (1972). Propagation of blast wave in a combustible gas. Astronautica Acta, 17, 529–537.

    Google Scholar 

  • Kurosaka, M., & Tsuboi, N. (2014). Spinning detonation, cross-currents, and the chapman-Jouguet velocity. Journal of Fluid Mechanics, 756, 728–757.

    Article  MathSciNet  Google Scholar 

  • Li, J., Zhao, Z., Kazakov, A., & Dryer, F. L. (2004). An updated comprehensive kinetic model of hydrogen combustion. International Journal of Chemical Kinetics, 36(10), 566–575.

    Article  Google Scholar 

  • Mueller, M. A., Kim, T. J., Yetter, R. A., & Dryer, F. L. (1999). Flow reactor studies and kinetic modeling of the H2/O2 reaction. International Journal of Chemical Kinetics, 31(2), 113–125.

    Article  Google Scholar 

  • Niibo, T., Morii, Y., Ashahara, M., Tsuboi, N., & Hayashi, A. K. (2016). Numerical study on direct initiation of cylindrical detonation in H2/O2 mixtures: Effect of higher-order schemes on detonation propagation. Combustion Science and Technology, 188(11–12), 2044–2059.

    Article  Google Scholar 

  • Nonomura, T., & Fujii, K. (2009). Effects of difference scheme type in high-order weighted compact nonlinear schemes. Journal of Computational Physics, 228, 3533–3539.

    Article  MATH  Google Scholar 

  • Nonomura, T., & Fujii, K. (2013). Robust explicit formulation of weighted compact nonlinear scheme. Computers and Fluids, 85, 8–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Nonomura, T., Iizuka, N., & Fujii, K. (2010). Freestream and vortex preservation properties of highorder WENO and WCNS on curvilinear grids. Computers and Fluids, 39, 197–214.

    Article  MathSciNet  MATH  Google Scholar 

  • Nonomura, T., Morizawa, S., Terashima, H., Obayashi, S., & Fujii, K. (2012). Numerical (error) issues on compressible multicomponent flows using a high-order differencing scheme: Weighted compact nonlinear scheme. Journal of Computational Physics, 231, 3181–3210.

    Article  MathSciNet  MATH  Google Scholar 

  • O’Conaire, M. O., Curran, H. J., Simmie, J. M., Pitz, W. J., & Westbrook, C. K. (2004). A comprehensive modeling study of hydrogen oxidation. International Journal of Chemical Kinetics, 36(11), 603–622.

    Article  Google Scholar 

  • Odlyzko, A. M. (1985). Discrete logarithms in finite fields and their cryptographic significance. Lecture Notes in Computer Science, 209, 224–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Oran, E. S., Young, T., & Boris, J. P. (1979). Application of time-dependent numerical methods to the description of reactive shocks. Seventeenth Symposium (International) on Combustion, 43–54.

    Google Scholar 

  • Petersen, E. L., & Hanson, R. K. (1999). Reduced kinetics mechanisms for ram accelerator combustion. J. Propulsion Power, 15, 591–600.

    Article  Google Scholar 

  • Saxena, P., & Williams, F. A. (2006). Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide. Combustion and Flame, 145(1–2), 316–323.

    Article  Google Scholar 

  • Schwer, D., & Kailasanath, K. (2013). Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels. Proceedings of the Combustion Institute, 34, 1991–1998.

    Article  Google Scholar 

  • Shepherd, J. E. (1986). Chemical kinetics of H2-air-diluent detonations. InProgr. in Astronautics and aeronautics (Vol. 106, pp. 263–293).

    Google Scholar 

  • Shimizu, K., Hibi, H., Koshi, M., Morii, M., & Tsuboi, N. (2011). Updated kinetic mechanism for high-pressure hydrogen combustion. Journal of Propulsion and Power, 27(2), 383–396.

    Article  Google Scholar 

  • Shuen, J. S. (1992). Upwind differencing and LU factorization for chemical non-equilibrium Navier-stokes equations. Journal of Computational Physics, 909, 233–250.

    Article  MATH  Google Scholar 

  • Stull, D. R., & Prophet, H. (1971). JANAF Thermochemical Tables (2nd ed.). NSRDS-NBS, 37.

    Google Scholar 

  • Togashi, F., Lohner, R., & Tsuboi, N. (2009). Numerical simulation of H2/air detonation using unstructured mesh. Shock Waves, 19(2), 151–162.

    Article  MATH  Google Scholar 

  • Tsuboi, N., & Koichi Hayashi, A. (2007). Numerical study on spinning detonations. Proceedings of the Combustion Institute, 31, 2389–2396.

    Article  Google Scholar 

  • Tsuboi, N., Katoh, S., & Hayashi, A. K. (2002). Three-dimensional numerical simulation for hydrogen/air detonation: Rectangular and diagonal structures. Proceedings of the Combustion Institute, 29, 2783–2788.

    Article  Google Scholar 

  • Tsuboi, N., Eto, K., & Hayashi, A. K. (2007). Detailed structure of spinning detonation in a circular tube. Combustion and Flame, 149(1–2), 144–161.

    Article  Google Scholar 

  • Tsuboi, N., Asahara, M., Eto, K., & Hayashi, A. K. (2008a). Numerical simulation of spinning detonation in square tube. Shock Waves, 18(4), 329–344.

    Article  MATH  Google Scholar 

  • Tsuboi, N., Daimon, Y., & Hayashi, A. K. (2008b). Three-dimensional numerical simulation of detonations in coaxial tubes. Shock Waves, 18(5), 379–392.

    Article  MATH  Google Scholar 

  • Tsuboi, N., Hayashi, A. K., & Koshi, M. (2009). Energy release effect of mixture on single spinning detonation structure. Proceedings of the Combustion Institute, 32, 2405–2412.

    Article  Google Scholar 

  • Tsuboi, N., Morii, Y., & Koichi Hayashi, A. (2013). Two-dimensional numerical simulation on galloping detonation in a narrow channel. Proceedings of the Combustion Institute, 34(2), 1999–2007.

    Article  Google Scholar 

  • Tsuboi, N., Eto, S., Hayashi, A. K., & Kojima, T. (2017). Front cellular structure and thrust performance on hydrogen-oxygen rotating detonation engine. Journal of Propulsion and Power, 33(1), 100–111.

    Article  Google Scholar 

  • Tsuboi, N., Watanabe, Y., Kojima, T., & Hayashi, A. K. (2015). Numerical estimation of the thrust performance on a rotating detonation engine for a hydrogen-oxygen mixture. Proceedings of the Combustion Institute, 35(2), 2005–2013.

    Article  Google Scholar 

  • Wada, Y., & Liou, M. (1994). A flux splitting scheme with high resolution and robustness for discontinuities. AIAA Paper, 94-0083, 1994.

    Google Scholar 

  • Wintenberger, E., & Shepherd, J. E. (2003). A model for the performance of air-breathing pulse detonation engines. AIAA Paper, 03-4511, 2003.

    Google Scholar 

  • Yee, H. C. (1987). Upwind and symmetric shock-capturing schemes. NASA TM-89464.

    Google Scholar 

  • Zhang, S., Jiang, S., & Shu, C. W. (2008). Development of nonlinear weighted compact schemes with increasingly higher order accuracy. Journal of Computational Physics, 227, 7294–7321.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhdan, S. A., Bykovskii, F. A., & Vedernikov, E. F. (2007). Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture. Combustion, Explosion and Shock Waves, 43(4), 449–459.

    Article  Google Scholar 

  • Zhou, R., & Wang, J. P. (2012). Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines. Combustion and Flame, 159, 3632–3645.

    Article  Google Scholar 

Download references

Acknowledgements

This research was done in collaboration with Cybermedia Center using the Osaka University supercomputer system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Tsuboi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsuboi, N., Asahara, M., Kojima, T., Koichi Hayashi, A. (2018). Numerical Simulation on Rotating Detonation Engine: Effects of Higher-Order Scheme. In: Li, JM., Teo, C., Khoo, B., Wang, JP., Wang, C. (eds) Detonation Control for Propulsion. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-319-68906-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68906-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68905-0

  • Online ISBN: 978-3-319-68906-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics