Advertisement

Multiscale Modeling of Electroactive Polymer Composites

  • Marc-André Keip
  • Jörg Schröder
Chapter
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 581)

Abstract

Electroactive polymer composites are materials that consist of an elastomeric matrix and dispersed high-dielectric-modulus or metallic inclusions. The addition of the inclusions generally leads to a significant enhancement of the electrostatic actuation or, more generally, of the overall electro-mechanical coupling. This enhancement is mainly due to the contrast of dielectric moduli of the individual phases, which induces fluctuations of the electric field in the matrix material. The present contribution aims at the derivation and implementation of a multiscale homogenization framework for the macroscopic simulation of electroactive polymer composites with explicit consideration of their microscopic structure. This is achieved through the development of a two-scale computational homogenization approach for electro-mechanically coupled solids at finite deformations. The microscopic part of the problem is defined on a representative volume element that is attached at each integration point of the macroscopic domain. In order to derive energetically consistent transition conditions between the scales a generalized form of the Hill-Mandel condition extended to electro-elastic phenomena at large deformations is exploited. An efficient solution of the macroscopic boundary value problem is guaranteed by means of an algorithmically consistent tangent. The method is applied to the simulation of different dielectric polymer-ceramic composites, which are analzyed with regard to their effective actuation properties. In addition to that, an example of a multiscale electro-mechanical actuator at large deformations is presented.

Notes

Acknowledgements

This research has been facilitated through financial funding of the German Research Foundation (Research Group 1509 Ferroic Functional Materials—Multiscale Modeling and Experimental Characterization, grants no. KE 1849/2-2 & SCHR 570/12-1 and the Cluster of Excellence EXC 310 in Simulation Technology). This funding is gratefully acknowledged.

References

  1. Ask, A., Menzel, A., & Ristinmaa, M. (2012). Electrostriction in electro-viscoelastic polymers. Mechanics of Materials, 50, 9–21.CrossRefGoogle Scholar
  2. Ask, A., Denzer, R., Menzel, A., & Ristinmaa, M. (2013). Inverse-motion-based form finding for quasi-incompressible finite electroelasticity. International Journal for Numerical Methods in Engineering, 94, 554–572.MathSciNetCrossRefMATHGoogle Scholar
  3. Bar-Cohen, Y. (Eds.). (2001). Electroactive polymer (EAP) actuators as artificial muscles: Reality, potential, and challenges. SPIE Press.Google Scholar
  4. Bertoldi, K., & Gei, M. (2011). Instabilities in multilayered soft dielectrics. Journal of the Mechanics and Physics of Solids, 59(1), 18–42.MathSciNetCrossRefMATHGoogle Scholar
  5. Bhattacharya, K., Li, J., & Xiao, Y. (2001). Electromechanical models for optimal design and effective behavior of electroactive polymers. In Y. Bar-Cohen (Ed.), Electroactive polymer (EAP) actuators as artificial muscles: Reality, potential, and challenges (pp. 309–330). SPIE Press.Google Scholar
  6. Bustamante, R., Dorfmann, A., & Ogden, R. W. (2009). On electric body forces and maxwell stresses in nonlinearly electroelastic solids. International Journal of Engineering Science, 47(11), 1131–1141.MathSciNetCrossRefMATHGoogle Scholar
  7. Cao, C., & Zhao, X. (2013). Tunable stiffness of electrorheological elastomers by designing mesostructures. Applied Physics Letters, 103(4), 041901.CrossRefGoogle Scholar
  8. Carpi, F., & Rossi, D. D. (2005). Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder. IEEE Transactions on Dielectrics and Electrical Insulation, 12(4), 835–843. ISSN 1070-9878.Google Scholar
  9. Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R. E., & Sommer-Larsen, P. (Eds.). (2011). Dielectric elastomers as electromechanical transducers: Fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Elsevier.Google Scholar
  10. Cohen, N. (2014). Multiscale analysis of the electromechanical coupling in dielectric elastomers. European Journal of Mechanics-A/Solids, 48, 48–59.MathSciNetCrossRefGoogle Scholar
  11. Cohen, N., Menzel, A., & DeBotton, G. (2016). Towards a physics-based multiscale modelling of the electro-mechanical coupling in electro-active polymers. Proceedings of the Royal Society A, 472, 20150462. (The Royal Society).Google Scholar
  12. DeBotton, G., Tevet-Deree, L., & Socolsky, E. A. (2007). Electroactive heterogeneous polymers: analysis and applications to laminated composites. Mechanics of Advanced Materials and Structures, 14(1), 13–22.Google Scholar
  13. Dorfmann, A., & Ogden, R. W. (2005). Nonlinear electroelasticity. Acta Materialia, 174(3–4), 167–183. ISSN 0001-5970.Google Scholar
  14. Dorfmann, A., & Ogden, R. W. (2006). Nonlinear electroelastic deformations. Journal of Elasticity, 82(2), 99–127. ISSN 0374-3535.Google Scholar
  15. Eringen, A. C. (1963). On the foundations of electroelastostatics. International Journal of Engineering Science, 1(1), 127–153.MathSciNetCrossRefGoogle Scholar
  16. Eringen, A. C., & Maugin, G. A. (1990). Electrodynamics of continua. New York: Springer.CrossRefGoogle Scholar
  17. Goshkoderia, A., & Rudykh, S. (2017). Electromechanical macroscopic instabilities in soft dielectric elastomer composites with periodic microstructures. European Journal of Mechanics-A/Solids, 65, 243–256.MathSciNetCrossRefGoogle Scholar
  18. Goulbourne, N. C., Mockensturm, E. M., & Frecker, M. I. (2007). Electro-elastomers: Large deformation analysis of silicone membranes. International Journal of Solids and Structures, 44(9), 2609–2626.CrossRefMATHGoogle Scholar
  19. Hill, R. (1963). Elastic properties of reinforced solids—some theoretical principles. Journal of the Mechanics and Physics of Solids, 11, 357–372.CrossRefMATHGoogle Scholar
  20. Huang, C., Zhang, Q. M., & Su, J. (2003). High-dielectric-constant all-polymer percolative composites. Applied Physics Letters, 82(20), 3502–3504.CrossRefGoogle Scholar
  21. Huang, C., Zhang, Q. M., DeBotton, G., & Bhattacharya, K. (2004). All-organic dielectric-percolative three-component composite materials with high electromechanical response. Applied Physics Letters, 84, 4391–4393.CrossRefGoogle Scholar
  22. Huang, C., Zhang, Q. M., Li, J. Y., & Rabeony, M. (2005). Colossal dielectric and electromechanical responses in self-assembled polymeric nanocomposites. Applied Physics Letters, 87(18), 182901–182901–3. ISSN 0003-6951.Google Scholar
  23. Javili, A., Chatzigeorgiou, G., & Steinmann, P. (2013). Computational homogenization in magneto-mechanics. International Journal of Solids and Structures, 50(25–26), 4197–4216. ISSN 0020-7683.Google Scholar
  24. Keip, M.-A. (2012). Modeling of electro-mechanically coupled materials on multiple scales. Ph.D. thesis, Institute of Mechanics, Department Civil Engineering, University of Duisburg-Essen.Google Scholar
  25. Keip, M.-A., & Rambausek, M. (2016). A multiscale approach to the computational characterization of magnetorheological elastomers. International Journal for Numerical Methods in Engineering, 107, 338–360.MathSciNetCrossRefMATHGoogle Scholar
  26. Keip, M.-A., & Rambausek, M. (2017). Computational and analytical investigations of shape effects in the experimental characterization of magnetorheological elastomers. International Journal of Solids and Structures, 121, 1–20. https://doi.org/10.1016/.ijsolstr.2017.04.012.
  27. Keip, M.-A., Steinmann, P., & Schröder, J. (2014). Two-scale computational homogenization of electro-elasticity at finite strains. Computer Methods in Applied Mechanics and Engineering, 278, 62–79.Google Scholar
  28. Keip, M.-A., Schrade, D., Thai, H., Schröder, J., Svendsen, B., Müller, R., et al. (2015). Coordinate-invariant phase field modeling of ferro-electrics, part ii: Application to composites and poly-crystals. GAMM-Mitteilungen, 38(1), 115–131.MathSciNetCrossRefGoogle Scholar
  29. Kim, K. J., & Tadokoro, S. (2007). Electroactive polymers for robotics applications: Artificial muscles and sensors. New York: Springer.Google Scholar
  30. Klassen, M., Xu, B.-X., Klinkel, S., & Müller, R. (2012). Material modeling and microstructural optimization of dielectric elastomer actuators. Technische Mechanik, 32(1), 38–52.Google Scholar
  31. Klinkel, S., Zwecker, S., & Müller, R. (2013). A solid shell finite element formulation for dielectric elastomers. Journal of Applied Mechanics, 80, 021026.CrossRefGoogle Scholar
  32. Kouznetsova, V., Geers, M. G. D., & Brekelmans, W. A. M. (2002). Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. International Journal for Numerical Methods in Engineering, 54(8), 1235–1260.CrossRefMATHGoogle Scholar
  33. Kovacs, G., Lochmatter, P., & Wissler, M. (2007). An arm wrestling robot driven by dielectric elastomer actuators. Smart Materials and Structures, 16(2), S306.CrossRefGoogle Scholar
  34. Kovetz, A. (2000). Electromagnetic theory. Oxford: Oxford University Press.MATHGoogle Scholar
  35. Labusch, M., Etier, M., Lupascu, D. C., Schröder, J., & Keip, M.-A. (2014). Product properties of a two-phase magneto-electric composite: Synthesis and numerical modeling. Computational Mechanics, 54(1), 71–83.MathSciNetCrossRefMATHGoogle Scholar
  36. Lefèvre, V., & Lopez-Pamies, O. (2017). Nonlinear electroelastic deformations of dielectric elastomer composites: Li-non-gaussian elastic dielectrics. Journal of the Mechanics and Physics of Solids, 99, 438–470.MathSciNetCrossRefGoogle Scholar
  37. Li, J. Y., Huang, C., & Zhang, Q. M. (2004). Enhanced electromechanical properties in all-polymer percolative composites. Applied Physics Letters, 84(16), 3124–3126. ISSN 0003-6951.Google Scholar
  38. Li, W., & Landis, C. M. (2012). Deformation and instabilities in dielectric elastomer composites. Smart Materials and Structures, 21(9), 094006.CrossRefGoogle Scholar
  39. Lopez-Pamies, O. (2014). Elastic dielectric composites: Theory and application to particle-filled ideal dielectrics. Journal of the Mechanics and Physics of Solids, 64, 61–82. ISSN 0022-5096.Google Scholar
  40. Lopez-Pamies, O., Goudarzi, T., Meddeb, A. B., & Ounaies, Z. (2014). Extreme enhancement and reduction of the dielectric response of polymer nanoparticulate composites via interphasial charges. Applied Physics Letters, 104(24), 242904.CrossRefGoogle Scholar
  41. Markovic, D., Niekamp, R., Ibrahimbegovic, A., Matthies, H. G., & Taylor, R. L. (2005). Multi-scale modeling of heterogeneous structures with inelastic constitutive behavior. International Journal for Computer-Aided Engineering and Software, 22(5/6), 664–683.CrossRefMATHGoogle Scholar
  42. Maugin, G. (1988). Continuum mechanics of electromagnetic solids (Vol. 33). Amsterdam: North-Holland.CrossRefMATHGoogle Scholar
  43. McMeeking, R. M., & Landis, C. M. (2005). Electrostatic forces and stored energy for deformable dielectric materials. Journal of Applied Mechanics, 72(4), 581–590.CrossRefMATHGoogle Scholar
  44. Michel, J. C., Moulinec, H., & Suquet, P. (1999). Effective properties of composite materials with periodic microstructure: A computational approach. Computer Methods in Applied Mechanics and Engineering, 172, 109–143.MathSciNetCrossRefMATHGoogle Scholar
  45. Miehe, C., & Koch, A. (2002). Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Archive of Applied Mechanics, 72(4), 300–317.CrossRefMATHGoogle Scholar
  46. Miehe, C., Schotte, J., & Schröder, J. (1999a). Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Computational Materials Science, 16(1–4), 372–382.CrossRefGoogle Scholar
  47. Miehe, C., Schröder, J., & Schotte, J. (1999b). Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering, 171, 387–418.MathSciNetCrossRefMATHGoogle Scholar
  48. Miehe, C., Vallicotti, D., & Teichtmeister, S. (2015a). Homogenization and multiscale stability analysis in finite magneto-electro-elasticity. GAMM-Mitteilungen, 38(2), 313–343.MathSciNetCrossRefGoogle Scholar
  49. Miehe, C., Vallicotti, D., & Zäh, D. (2015b). Computational structural and material stability analysis in finite electro-elasto-statics of electro-active materials. International Journal for Numerical Methods in Engineering, 102(10), 1605–1637.MathSciNetCrossRefMATHGoogle Scholar
  50. Miehe, C., Vallicotti, D., & Teichtmeister, S. (2016). Homogenization and multiscale stability analysis in finite magneto-electro-elasticity. application to soft matteree, me and mee composites. Computer Methods in Applied Mechanics and Engineering, 300, 294–346.MathSciNetCrossRefGoogle Scholar
  51. Müller, R., Xu, B.-X., Gross, D., Lyschik, M., Schrade, D., & Klinkel, S. (2010). Deformable dielectrics-optimization of heterogeneities. International Journal of Engineering Science, 48(7), 647–657.CrossRefGoogle Scholar
  52. Özdemir, I., Brekelmans, W. A. M., & Geers, M. G. D. (2008a). Computational homogenization for heat conduction in heterogeneous solids. International Journal for Numerical Methods in Engineering, 73(2), 185–204.MathSciNetCrossRefMATHGoogle Scholar
  53. Özdemir, I., Brekelmans, W. A. M., & Geers, M. G. D. (2008b). FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Computer Methods in Applied Mechanics and Engineering, 198(34), 602–613.MathSciNetCrossRefMATHGoogle Scholar
  54. Pao, Y. H. (1978). Electromagnetic forces in deformable continua. In S. Nemat-Nasser (Ed.), Mechanics today (Vol. 4, pp. 209–306). Oxford: Pergamon Press.Google Scholar
  55. Pelrine, R., Kornbluh, R., Pei, Q., & Joseph, J. (2000). High-speed electrically actuated elastomers with strain greater than 100%. Science, 287(5454), 836–839.CrossRefGoogle Scholar
  56. Pelteret, J.-P., Davydov, D., McBride, A., Vu, D. K., & Steinmann, P. (2016). Computational electro-elasticity and magneto-elasticity for quasi-incompressible media immersed in free space. International Journal for Numerical Methods in Engineering, 108(11), 1307–1342.MathSciNetCrossRefGoogle Scholar
  57. Plante, J.-S., & Dubowsky, S. (2006). Large-scale failure modes of dielectric elastomer actuators. International Journal of Solids and Structures, 43 (25–26), 7727–7751. ISSN 0020-7683.Google Scholar
  58. Ponte Castañeda, P., & Siboni, M. H. (2012). A finite-strain constitutive theory for electro-active polymer composites via homogenization. International Journal of Non-Linear Mechanics, 47(2), 293–306.Google Scholar
  59. Rudykh, S., Lewinstein, A., Uner, G., & DeBotton, G. (2013). Analysis of microstructural induced enhancement of electromechanical coupling in soft dielectrics. Applied Physics Letters, 102(15), 151905.Google Scholar
  60. Rudykh, S., Bhattacharya, K., & DeBotton, G. (2014). Multiscale instabilities in soft heterogeneous dielectric elastomers. Proceedings of the Royal Society A, 470(2162), 20130618.Google Scholar
  61. Schröder, J. (2000). Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Instabilitäten. Habilitation, Bericht aus der Forschungsreihe des Instituts für Mechanik (Bauwesen), Lehrstuhl I, Universität Stuttgart.Google Scholar
  62. Schröder, J. (2009). Derivation of the localization and homogenization conditions for electro-mechanically coupled problems. Computational Materials Science, 46(3), 595–599.CrossRefGoogle Scholar
  63. Schröder, J. (2014). A numerical two-scale homogenization scheme: The FE2-method. In J. Schröder & K. Hackl (Eds.), Plasticity and beyond, CISM International Centre for Mechanical Sciences (Vol. 550, pp. 1–64). Springer. ISBN 978-3-7091-1624-1.Google Scholar
  64. Schröder, J., & Keip, M.-A. (2010). A framework for the two-scale homogenization of electro-mechanically coupled boundary value problems. In M. Kuszma & K. Wilmanski (Eds.), Computer methods in mechanics (Vol. 1, pp. 311–329). Berlin, Heidelberg: Springer. ISBN 978-3-642-05241-5.Google Scholar
  65. Schröder, J., & Keip, M.-A. (2012). Two-scale homogenization of electromechanically coupled boundary value problems. Computational mechanics, 50, 229–244. ISSN 0178-7675.Google Scholar
  66. Schröder, J., Labusch, M., Keip, M.-A., Kiefer, B., Brands, D., & Lupascu, D. C. (2015). Computation of non-linear magneto-electric product properties of 0–3 composites. GAMM-Mitteilungen, 38(1), 8–24.MathSciNetCrossRefGoogle Scholar
  67. Schröder, J., Labusch, M., & Keip, M.-A. (2016). Algorithmic two-scale transition for magneto-electro-mechanically coupled problems: Fe2-scheme: Localization and homogenization. Computer Methods in Applied Mechanics and Engineering, 302, 253–280.MathSciNetCrossRefGoogle Scholar
  68. Siboni, H. M., & Ponte, P. (2013). Castañeda. Dielectric elastomer composites: Small-deformation theory and applications. Philosophical Magazine, 93(21), 2769–2801.CrossRefGoogle Scholar
  69. Siboni, M. H., & Ponte Castañeda, P. (2014). Finite-strain response and stability analysis, Fiber-constrained, dielectric-elastomer composites. Journal of the Mechanics and Physics of Solids, 68, 211–238.Google Scholar
  70. Siboni, M. H., Avazmohammadi, R., & Ponte, P. (2015). Castañeda. Electromechanical instabilities in fiber-constrained, dielectric-elastomer composites subjected to all-around dead-loading. Mathematics and Mechanics of Solids, 20(6), 729–759.MathSciNetCrossRefMATHGoogle Scholar
  71. Skatulla, S., Arockiarajan, A., & Sansour, C. (2009). A nonlinear generalized continuum approach for electro-elasticity including scale effects. Journal of the Mechanics and Physics of Solids, 57(1), 137–160.MathSciNetCrossRefMATHGoogle Scholar
  72. Skatulla, S., Sansour, C., & Arockiarajan, A. (2012). A multiplicative approach for nonlinear electro-elasticity. Computer Methods in Applied Mechanics and Engineering, 245–246, 243–255.MathSciNetCrossRefMATHGoogle Scholar
  73. Smit, R. J. M., Brekelmans, W. A. M., & Meijer, H. E. H. (1998). Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering, 155, 181–192.CrossRefMATHGoogle Scholar
  74. Somer, D. D., de Souza Neto, E. A., Dettmer, W. G., & Peric, D. (2009). A sub-stepping scheme for multi-scale analysis of solids. Computer Methods in Applied Mechanics and Engineering, 198(9–12), 1006–1016.Google Scholar
  75. Sridhar, A., Keip, M.-A., & Miehe, C. (2016). Homogenization in micro-magneto-mechanics. Computational Mechanics, 58(1), 151–169.MathSciNetCrossRefMATHGoogle Scholar
  76. Steinmann, P. (2011). Computational nonlinear electro-elasticity–getting started. In R. W. Ogden & D. J. Steigmann (Eds.), Mechanics and electrodynamics of magneto-and electro-elastic materials, CISM International Centre for Mechanical Sciences (Vol. 527, pp. 181–230). Springer.Google Scholar
  77. Suo, Z., Zhao, X., & Greene, W. H. (2008). A nonlinear field theory of deformable dielectrics. Journal of the Mechanics and Physics of Solids, 56(2), 467–486.MathSciNetCrossRefMATHGoogle Scholar
  78. Terada, K., & Kikuchi, N. (2001). A class of general algorithms for multi-scale analyses of heterogeneous media. Computer Methods in Applied Mechanics and Engineering, 190(40–41), 5427–5464.MathSciNetCrossRefMATHGoogle Scholar
  79. Terada, K., Saiki, I., Matsui, K., & Yamakawa, Y. (2003). Two-scale kinematics and linearization for simultaneous two-scale analysis of periodic heterogeneous solids at finite strain. Computer Methods in Applied Mechanics and Engineering, 192(31–32), 3531–3563.MathSciNetCrossRefMATHGoogle Scholar
  80. Tian, L., Tevet-Deree, L., DeBotton, G., & Bhattacharya, K. (2012). Dielectric elastomer composites. Journal of the Mechanics and Physics of Solids, 60(1), 181–198.MathSciNetCrossRefMATHGoogle Scholar
  81. Toupin, R. A. (1956). The elastic dielectric. Journal of Rational Mechanics and Analysis, 5(6), 849–915.MathSciNetMATHGoogle Scholar
  82. Vu, D. K., & Steinmann, P. (2007). Nonlinear electro- and magneto-elastostatics: material and spatial settings. International Journal of Solids and Structures, 44(24), 7891–7905.CrossRefMATHGoogle Scholar
  83. Vu, D. K., & Steinmann, P. (2010). A 2-d coupled bem-fem simulation of electro-elastostatics at large strain. Computer Methods in Applied Mechanics and Engineering, 199(17), 1124–1133.MathSciNetCrossRefMATHGoogle Scholar
  84. Vu, D. K., Steinmann, P., & Possart, G. (2007). Numerical modelling of non-linear electroelasticity. International Journal for Numerical Methods in Engineering, 70(6), 685–704. ISSN 1097-0207.Google Scholar
  85. Xu, B.-X., Mueller, R., Klassen, M., & Gross, D. (2010). On electromechanical stability analysis of dielectric elastomer actuators. Applied Physics Letters, 97(16), 162908.CrossRefGoogle Scholar
  86. Xu, B.-X., Mueller, R., Theis, A., Klassen, M., & Gross, D. (2012). Dynamic analysis of dielectric elastomer actuators. Applied Physics Letters, 100(11), 112903.CrossRefGoogle Scholar
  87. Zäh, D., & Miehe, C. (2013). Computational homogenization in dissipative electro-mechanics of functional materials. Computer Methods in Applied Mechanics and Engineering, 267, 487–510.MathSciNetCrossRefMATHGoogle Scholar
  88. Zäh, D., & Miehe, C. (2015). Multiplicative electro-elasticity of electroactive polymers accounting for micromechanically-based network models. Computer Methods in Applied Mechanics and Engineering, 286, 394–421.MathSciNetCrossRefGoogle Scholar
  89. Zhang, Q. M., Li, H., Poh, M., Xia, F., Cheng, Z.-Y., Xu, H., & Huang, C. (2002). An all-organic composite actuator material with a high dielectric constant. Nature, 419(6904), 284–287.Google Scholar
  90. Zhang, S., Huang, C., Klein, R. J., Xia, F., Zhang, Q. M., & Cheng, Z.-Y. (2007). High performance electroactive polymers and nano-composites for artificial muscles. Journal of Intelligent Material Systems and Structures, 18(2), 133–145.CrossRefGoogle Scholar
  91. Zhao, X., & Suo, Z. (2007). Method to analyze electromechanical stability of dielectric elastomers. Applied Physics Letters, 91(6), 061921.CrossRefGoogle Scholar
  92. Zhao, X., & Wang, Q. (2014). Harnessing large deformation and instabilities of soft dielectrics: Theory, experiment, and application. Applied Physics Reviews, 1(2), 021304.CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2018

Authors and Affiliations

  1. 1.Chair of Material TheoryInstitute of Applied Mechanics, University of StuttgartStuttgartGermany
  2. 2.Department of Civil Engineering, Faculty of EngineeringInstitute of Mechanics, University of Duisburg-EssenEssenGermany

Personalised recommendations