Electromechanical Models of Ferroelectric Materials

  • J. E. Huber
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 581)


Models of the electromechanical behaviour of ferroelectric materials are reviewed. Starting from the constitutive relationships for piezoelectrics and estimates of the response of piezoelectric composites, the development of models is traced from the macro-scale through to the micro-scale. Derivations of models based on extensions of classical plasticity and crystal plasticity theory are given, following the literature, and example applications of these models are shown. The formation of domain patterns is discussed and minimum energy methods based on the concept of compatibility are used to derive typical domain patterns for tetragonal and rhombohedral ferroelectrics. Methods for modelling the evolution of domain patterns are described. Finally the outlook for future directions in modelling of ferroelectrics is discussed.



Thanks are due to Nien-Ti Tsou for preparing and allowing the use of figures showing domain patterns, as well as for many helpful and informative discussions.


  1. Arlt, G. (1990). Twinning in ferroelectric and ferroelastic ceramics: Stress relief. Journal of Materials Science, 25, 2655–2666.CrossRefGoogle Scholar
  2. Arlt, G., & Sasko, P. (1980). Domain configuration and equilibrium size of domains in BaTiO\(_3\) ceramics. Journal of Applied Physics, 51, 4956–4960.CrossRefGoogle Scholar
  3. Ball, J. M., & James, R. D. (1987). Fine phase mixtures as minimizers of energy. Archive for Rational Mechanics and Analysis, 11, 13–52.MathSciNetCrossRefMATHGoogle Scholar
  4. Bassiouny, E., Ghaleb, A. F., & Maugin, G. A. (1988). Thermodynamical formulation for coupled electromechanical hysteresis effects 1. Basic equations. International Journal of Engineering Science, 26, 1279–1295.MathSciNetCrossRefMATHGoogle Scholar
  5. Bhattacharya, K. (1993). Comparison of the geometrically nonlinear and linear theories of martensitic transformtion. Continuum Mechanics and Thermodynamics, 5, 205–242.MathSciNetCrossRefMATHGoogle Scholar
  6. Bhattacharya, K. (2003). Microstructure of Martensite, Why it Forms and How It Gives Rise to the Shape-memory Effect. New York: Oxford University Press.Google Scholar
  7. Bisegna, P., & Luciano, R. (1996). Variational bounds for the overall properties of piezoelectric composites. Journal of the Mechanics and Physics of Solids, 44, 583–602.MathSciNetCrossRefMATHGoogle Scholar
  8. Burcsu, E., Ravichandran, G., & Bhattacharya, K. (2004). Large electrostrictive actuation of barium titanate single crystals. Journal of the Mechanics and Physics of Solids, 52, 823–846.CrossRefGoogle Scholar
  9. Cocks, A. C. F., & McMeeking, R. M. (1999). A phenomenological constitutive law for the behaviour of ferroelectric ceramics. Ferroelectrics, 228, 219–228.CrossRefGoogle Scholar
  10. Dayal, K., & Bhattacharya, K. (2007). A real-space non-local phase-field model of ferroelectric domain patterns in complex geometries. Acta Materialia, 55, 1907–1917.CrossRefGoogle Scholar
  11. Devonshire, A. F. (1949). Theory of barium titanate 1. Philosophical Magazine, 40, 1040–1063.CrossRefGoogle Scholar
  12. Dunn, M. L., & Taya, M. (1993). Micromechanics predictions of the effective electroelastic mouli of piezoelectric composites. International Journal of Solids and Structures, 30, 161–175.CrossRefMATHGoogle Scholar
  13. Eshelby, J. D. (1957). The detrmination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London A, 241, 376–396.MathSciNetCrossRefMATHGoogle Scholar
  14. Fischer, F. D., Svoboda, J., & Petryk, H. (2014). Thermodynamic extremal principles for irreversible processes in materials science. Acta Materialia, 67, 1–20.CrossRefGoogle Scholar
  15. Hall, D. A., Steuwer, A., Cherdhirunkorn, B., Withers, P., & Mori, T. (2005). Micromechanics of residual stress and texture development due to poling in polycrystalline ferroelectric ceramics. Journal of the Mechanics and Physics of Solids, 53, 249–260.CrossRefMATHGoogle Scholar
  16. Haug, A., Huber, J. E., Onck, P. R., & Van der Giessen, E. (2007). Multi-grain analysis versus self-consistent estimates of ferroelectric polycrystals. Journal of the Mechanics and Physics of Solids, 55, 648–665.MathSciNetCrossRefMATHGoogle Scholar
  17. Hill, R. (1965). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13, 213–222.CrossRefGoogle Scholar
  18. Hooton, J. A., & Merz, W. J. (1955). Etch patterns and ferroelectric domains in BaTiO\(_3\) single crystals. Physical Review, 98, 409–413.CrossRefGoogle Scholar
  19. Huber, J.E., & Cocks, A.C.F. (2008). A variational model of ferroelectric microstructure. In Proceedings of ASME SMASIS08, 28–30 October 2008. Ellicott City, MD, USA.Google Scholar
  20. Huber, J. E., & Fleck, N. A. (2001). Multi-axial electrical switching of a ferroelectric: Theory versus experiment. Journal of the Mechanics and Physics of Solids, 49, 785–811.CrossRefMATHGoogle Scholar
  21. Huber, J. E., & Fleck, N. A. (2004). Ferroelectric switching: A micromechanics model versus measured behaviour. European Journal of Mechanics A-Solids, 23, 203–217.CrossRefMATHGoogle Scholar
  22. Huber, J. E., Fleck, N. A., Landis, C. M., & McMeeking, R. M. (1999). A constitutive model for ferroelectric polycrystals. Journal of the Mechanics and Physics of Solids, 47, 1663–1697.MathSciNetCrossRefMATHGoogle Scholar
  23. Hwang, S. C., Lynch, C. S., & McMeeking, R. M. (1995). Ferroelectric/ferroelastic interactons and a polarization switching model. Acta Metallurgica et Materialia, 43, 2073–2084.CrossRefGoogle Scholar
  24. James, R. D., & Hane, K. F. (2000). Martensitic transformations and shape-memory materials. Acta Materialia, 48, 197–222.CrossRefGoogle Scholar
  25. Jones, J. L., Slamovich, E. B., & Bowman, K. J. (2005). Domain texture distributions in tetragonal lead zirconate titanate by X-ray and neutron diffraction. Journal of Applied Physics, 97, 034113.CrossRefGoogle Scholar
  26. Kamlah, M., Liskowsky, A. C., McMeeking, R. M., & Balke, H. (2005). Finite element simulation of a polycrystalline ferroelectric based on a multidomain single crystal switching model. International Journal of Solids and Structures, 42, 2949–2964.CrossRefMATHGoogle Scholar
  27. Kamlah, M., & Tsakmakis, C. (1999). Phenomenological modelling of the non-linear electromechanical coupling in ferroelectrics. International Journal of Solids and Structures, 36, 669–695.CrossRefMATHGoogle Scholar
  28. Kanoute, P., Boso, D. P., Chaboche, J. L., & Schrefler, B. A. (2001). Multiscale methods for composites: A review. Archives of Computational Methods in Engineering, 16, 31–75.CrossRefMATHGoogle Scholar
  29. Kouznetsova, V., Brekelmans, W. A. M., & Baaijens, F. P. T. (2001). An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics, 27, 37–48.CrossRefMATHGoogle Scholar
  30. Landis, C. M. (2002). Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics. Journal of the Mechanics and Physics of Solids, 50, 127–152.CrossRefMATHGoogle Scholar
  31. Li, J. Y., & Liu, D. (2004). On ferroelectric crystals with engineered domain configurations. Journal of the Mechanics and Physics of Solids, 52, 1719–1742.MathSciNetCrossRefMATHGoogle Scholar
  32. Li, Y. L., Hu, S. Y., Liu, Z. K., & Chen, L. Q. (2001). Phase-field model of domain structures in ferroelectric thin films. Applied Physics Letters, 78, 3878–3880.CrossRefGoogle Scholar
  33. Lines, M.E., & Glass, A.M. (1977). Principles and Applications of Ferroelectrics and Related Materials. New York: Oxford University Press.Google Scholar
  34. Liu, Q. D., & Huber, J. E. (2007). State dependent linear moduli in ferroelectrics. International Journal of Solids and Structures, 44, 5635–5650.CrossRefGoogle Scholar
  35. Liu, T., & Lynch, C. S. (2006). Domain engineered relaxor ferroelectric single crystals. Continuum Mechanics and Thermodynamics, 18, 119–135.MathSciNetCrossRefMATHGoogle Scholar
  36. Loge, R. E., & Suo, Z. (1996). Nonequilibrium thermodynamics of ferroelectric domain evolution. Acta Materialia, 44, 3429–3438.CrossRefGoogle Scholar
  37. Lynch, C. S. (1996). The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT. Acta Materialia, 44, 4138–4148.CrossRefGoogle Scholar
  38. McGilly, L. J., Schilling, A., & Gregg, J. M. (2010). Domain bundle boundaries in single crystal BaTiO\(_3\) lamellae: searching for naturally forming dipole flux-closure/quadrupole chains. Nano Letters, 10, 4200–4205.CrossRefGoogle Scholar
  39. Park, S. E., & Shrout, T. R. (2007). Ultrahigh strain and piezoelectric behaviour in relaxor based ferroelectric single crystals. Journal of Applied Physics, 82, 1804–1811.CrossRefGoogle Scholar
  40. Pathak, A., & McMeeking, R. M. (2008). Three-dimensional finite element simulations of ferroelectric poycrystals under electrical and mechanical loading. Journal of the Mechanics and Physics of Solids, 56, 663–683.CrossRefMATHGoogle Scholar
  41. Shu, Y. C., & Bhattacharya, K. (2001). Domain patterns and macroscopic behaviour of ferroelectric materials. Philosophical Magazine B, 81, 2021–2054.CrossRefGoogle Scholar
  42. Sidorkin, A. S. (2006). Domain Structure in Ferroelectric and Related Materials. Cambridge International Science Publishing.Google Scholar
  43. Su, Y., & Landis, C. M. (2007). Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning. Journal of the Mechanics and Physics of Solids, 55, 280–305.MathSciNetCrossRefMATHGoogle Scholar
  44. Tangantsev, A. K., Cross, L. E., & Fousek, J. (2010). Domains in Ferroic Crystals and Thin Films. New York: Springer.CrossRefGoogle Scholar
  45. Tsou, N.T. (2011) Compatible domain structures in ferroelectric single crystals, Ph.D. thesis, University of Oxford.Google Scholar
  46. Tsou, N. T., & Huber, J. E. (2010). Compatible domain structures and the poling of single crystal ferroelectrics. Mechanics of Materials, 42, 740–753.CrossRefGoogle Scholar
  47. Tsou, N. T., Huber, J. E., & Cocks, A. C. F. (2008). Evolution of compatible laminate domain structures in ferroelectric single crystals. Acta Materialia, 56, 2117–2135.Google Scholar
  48. Tsou, N. T., Potnis, P. R., & Huber, J. E. (2011). Classification of laminate domain patterns in ferroelectrics. Physical Review B, 83, 184120.CrossRefGoogle Scholar
  49. Völker, B., & Kamlah, M. (2012). Large-signal analysis of typical ferroelectric domain structures using phase-field modeling. Smart Materials and Structures, 21, 055013.CrossRefGoogle Scholar
  50. Wang, J. J., Ma, X. Q., Li, Q., Britson, J., & Chen, L. Q. (2013). Phase-transitions and domain structures of ferroelectric nanoparticales: Phase-field model incorporating strong elastic and dielectric inhomogeneity. Acta Materialia, 61, 7591–7603.CrossRefGoogle Scholar
  51. Wang, J., Kamlah, M., & Zhang, T.-Y. (2009). Phase field simulations of ferroelectric nanoparticales with different long-range-electrostatic and -elastic interactions. Journal of Applied Physics, 105, 014104.CrossRefGoogle Scholar
  52. Wang, J., Shi, S. Q., Chen, L. Q., Li, Y. L., & Zhang, T. Y. (2004). Phase-field simulations of ferroelectric/ferroelastic polarization switching. Acta Materialia, 52, 749–764.CrossRefGoogle Scholar
  53. Weng, G. J., & Wong, D. T. (2009). Thermodynamic driving force in ferroelectric crystals with a rank-2 laminated domain pattern, and a study of enhanced electrostriction. Journal of the Mechanics and Physics of Solids, 57, 571–597.CrossRefMATHGoogle Scholar
  54. Wu, T., Zhao, P., Bao, M. Q., Bur, A., Hockel, J. L., Wong, K., et al. (2011). Domain engineered switchable strain states in ferroelectric(011) [Pb(Mg\(_{1/3}\)Nb\(_{2/3})\)O\(_3\)]\(_{(1-x)}\)-[PbTiO\(_3\)]\(_{(x)}\)(PMN-PT, \(x\approx 0.32\)) single crystals. Journal of Applied Physics, 109, 124101.CrossRefGoogle Scholar
  55. Xu, Y. (1991). Ferroelectric Materials and their Applications, North Holland Press.Google Scholar
  56. Yen, J. H., Shu, Y. C., Shieh, J., & Yeh, J. H. (2008). A study of electromechanical switching in ferroelectric single crystals. Journal of the Mechanics and Physics of Solids, 56, 2117–2135.MathSciNetCrossRefMATHGoogle Scholar
  57. Zhang, Z. Y., James, R. D., & Muller, S. (2009). Energy barriers and hysteresis in martensitic phase transformations. Acta Materialia, 57, 4332–4352.CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2018

Authors and Affiliations

  1. 1.Department of Engineering ScienceUniversity of OxfordOxfordUK

Personalised recommendations