Fundamentals of Magneto-Electro-Mechanical Couplings: Continuum Formulations and Invariant Requirements

  • Jörg Schröder
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 581)


Couplings of magnetic and electric fields in materials could allow for promising applications in medical and information technology. In this contribution, we recapitulate well-known aspects of magneto-electro-mechanical properties and their couplings. At first, we echo basic aspects of electricity and magnetism and Maxwell’s equations. Secondly, we summarize the governing equations for electrostatics and magnetostatics, point out the properties of physical fields across internal surfaces, and discuss the work-energy theorem of electrodynamics, the so-called Poynting‘s theorem. Thirdly, we will discuss some fundamental concepts of magneto-electro-mechanical couplings in matter. Here, we will formulate thermodynamic potentials depending on different basic variables in order to be flexible with a view to different modeling aspects. Afterwards, we discuss aspects of form-invariance of physical laws under coordinate transformations: Lorentz invariance, Galilean transformation and time reversal. Here, we focus on piezoelectric as well as on magnetic symmetry groups and give remarks on classical invariant theory suitable for coordinate-invariant modeling of thermodynamical potentials.


  1. Abraham, M. (1909). Zur Elektrodynamik bewegter Körper. Rendiconti del Circolo Matematico di Palermo, 28, 1–28.CrossRefMATHGoogle Scholar
  2. Abraham, M. (1910). Sull’elettrodinamica di Minkowski. Rendiconti del Circolo Matematico di Palermo, 30(0), 33–46. (see also: M. Abraham. (1923). Theorie der Elektrizität, Vol: II, Leibzig: Teubner).Google Scholar
  3. Bertotti, G. (1998). Hysteresis in magnetism for physicists, materials scientists, and engineers. Elsevier-Academic Press.Google Scholar
  4. Bertotti, G., & Mayergoyz, I. (2006a). The science of hysteresis (Vol. 1). Elsevier.Google Scholar
  5. Bertotti, G., & Mayergoyz, I. (2006b). The science of hysteresis (Vol. 2). Elsevier.Google Scholar
  6. Bertotti, G. & Mayergoyz, I. (2006c). The science of hysteresis (Vol. 3). Elsevier.Google Scholar
  7. Bhagavantam, S., & Pantulu, P. V. (1964). Magnetic symmetry and physical properties of crystals. Proceedings of the Indian Academy of Sciences-Section A, 59(1), 01–13.MathSciNetGoogle Scholar
  8. Bobbio, S. (2000). Electrodynamics of materials. Elsevier Academic Press.Google Scholar
  9. Boehler, J. P. (1987a). Introduction to the invariant formulation of anisotropic constitutive equations. In Applications of tensor functions in solid mechanics (pp. 13–30).Google Scholar
  10. Boehler, J. P. (1987b) Representations for isotropic and anisotropic non-polynominal tensor functions. In Applications of tensor functions in solid mechanics (pp. 31–53).Google Scholar
  11. Einstein, A., & Laub, J. (1908). über die elektromagnetischen Felder auf ruhende Körper ausgeübten ponderomotorischen Kräfte. Annals of Physics (Leipzig), 26, 541–550.CrossRefMATHGoogle Scholar
  12. Eringen, A. C.. & Maugin, G. A. (1989). Electrodynamics of continua i-foundations and solid media. Springer Verlag.Google Scholar
  13. Eringen, A. C., & Maugin, G. A. (1990). Electrodynamics of continua II-fluids and complex media. Springer Verlag.Google Scholar
  14. Fabrizio, M., & Morro, A. (2003). Electromagnetism of continuous media. Oxford Science Publications.Google Scholar
  15. Fatuzzo, E., & Merz, W. J. (1967). Ferroelectricity. John Wiley & Sons.Google Scholar
  16. Fließbach, T. (1999). Mechanik, Lehrbuch der theoretischen Physik 1. Sprektrum Akademischer Verlag.Google Scholar
  17. Fließbach, T. (2000). Elektrodynamik, Lehrbuch der theoretischen Physik 2. Spektrum Akademischer Verlag.Google Scholar
  18. Fushchych, W. I. (1969). Equations of motion in odd-dimensional spaces and \({T}-, {C}-\)invariance. Preprint of Institute of Theoretical Physics, Kiev, 69–17, 0 13ff.Google Scholar
  19. Grehn, J., & Krause, J. (2007). Metzler Physik. Schroedel.Google Scholar
  20. Griffiths, D. J. (2008). Introduction to electrodynamics. Pearson.Google Scholar
  21. Hofmann, H. (1986). Das elektormagnetische Feld-Theorie und grundlegende Anwendungen. Springer.Google Scholar
  22. Hutter K., Jöhnk K. (2004) Jump Conditions. In: Continuum methods of physical modeling. Berlin, Heidelberg: Springer.Google Scholar
  23. Jackson, J. D. (2002). Klassische Elektrodynamik. John Wiley & Sons Ltd.Google Scholar
  24. Kiehn, R. M. (1977). Parity and time inversion symmetries of electromagnetic systems. Foundations of Physics, 7, 301–311.CrossRefGoogle Scholar
  25. Kiral, E., & Eringen, A. C. (1990). Constitutive equations of nonlinear electromagnetic-elastic crystals. Springer-Verlag.Google Scholar
  26. Landau, L. D., & Lifschitz, E. M. (1985). Lehrbuch der theoretischen Physik. Akademie-Verlag.Google Scholar
  27. Lines, M. E., & Glass, A. M. (1977). Principles and applications of ferroelectrics and related materials. Oxford University Press.Google Scholar
  28. Liu, I.-S. (1982). On representations of anisotropic invariants. International Journal of Engineering Science, 20, 1099–1109.MathSciNetCrossRefMATHGoogle Scholar
  29. Maugin, G. A. (1988). Continuum mechanics of electromagnetic solids. Elsevier Science.Google Scholar
  30. Maugin, G. A., Pouget, J., Drouot, R. & Collet, B. (1991). Nonlinear electromechanical couplings. John Wiley & Sons.Google Scholar
  31. Maxwell, J. C. (1865). A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London.Google Scholar
  32. Maxwell, J. C. (1873). A treatise on electricity and magnetism (Vol. 1 and 2). Dover.Google Scholar
  33. Minkowski, H. (1908). Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern. Göttinger Nachrichten (pp. 53–111).Google Scholar
  34. Nahin, P. J. (1992). Maxwell’s grand unification. IEEE Spectrum, 29(3), 0 45 ff.Google Scholar
  35. Newham, R. E. (2005). Properties of materials. Oxford University Press.Google Scholar
  36. Pauli, W. (1979). Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a. Band I: 1919-1929. In A. Hermann, K.V. Meyenn, & V.F. Weisskopf.Google Scholar
  37. Schröder, J., & Gross, D. (2004). Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials. Archive of Applied Mechanics, 73, 533–552.CrossRefMATHGoogle Scholar
  38. Simonyi, K. (2001). Kulturgeschichte der Physik: Von den Anfängen bis heute. Harri Deutsch.Google Scholar
  39. Spencer, A. J. M. (1971). Theory of invariants. Continuum. Physics, 1, 239–353.Google Scholar
  40. Tipler, P. A. (1999). Physics for scientists and engineers (4th ed.). Freemann and Company: W.H.Google Scholar
  41. Weile, D. S., Hopkins, D. A., Gazonas, G. A., & Powers, B. M. (2014). On the proper formulation of maxwellian electrodynamics for continuum mechanics. Continuum Mechanics and Thermodynamics, 26, 387–401.MathSciNetCrossRefMATHGoogle Scholar
  42. Zohdi, T. (2012). Electromagnetic properties of multiphase dielectrics-A primer on modeling theory and computation. Springer.Google Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2018

Authors and Affiliations

  1. 1.Faculty of Engineering, Department Civil EngineeringInstitute of Mechanics, University of Duisburg-EssenEssenGermany

Personalised recommendations