Interactive Portfolio Optimization Using Mean-Gini Criteria

  • Ran Ji
  • Miguel A. LejeuneEmail author
  • Srinivas Y. Prasad
Part of the Multiple Criteria Decision Making book series (MCDM)


We study a multi-objective portfolio optimization model that employs two conflicting objectives—maximizing mean return, and minimizing risk as measured by the Gini Mean Difference (GMD). We assume that an investor’s implicit utility is a function of these two objectives and help the investor identify the optimal (i.e., most preferred) portfolio among the efficient ones. We develop an interactive solution procedure based on the concept of domination cones that can be used with a class of utility functions defined over Mean-Gini criteria. The investor’s preferences are elicited interactively through pairwise comparisons of efficient Mean-Gini portfolios based on which domination cones are derived to guide the search for the most preferred portfolio. The interactive solution method enjoys a finite convergence property. Computational results illustrating the effectiveness of the interactive procedure and the out-of-sample performance of the optimal portfolios for a range of implicit utility functions are presented. The results indicate that the optimal portfolios defined by our models consistently outperform the S&P 500 index. Further, an out-of-sample performance analysis reveals that a strategy emphasizing mean return over Gini performs best under similar market conditions over the training and testing sets, while a risk-averse strategy emphasizing Gini over mean return performs best under market reversal conditions.


Interactive solution method Mean-Gini model Multiobjective decision making Portfolio optimization 


  1. Abdelaziz, F. B., Aouni, B., & Fayedh, R. E. (2007). Multi-objective stochastic programming for portfolio selection. European Journal of Operational Research, 177, 1811–1823.CrossRefGoogle Scholar
  2. Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–228.CrossRefGoogle Scholar
  3. Briec, W., Kerstens, K., & Jokung, O. (2007). Mean-variance-skewness portfolio performance gauging: A general shortage function and dual approach. Management Science, 53(1), 135–149.CrossRefGoogle Scholar
  4. Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9(3–4), 181–186.CrossRefGoogle Scholar
  5. Chinchuluun, A., & Pardolos, P. M. (2007). A survey of recent developments in multiobjective optimization. Annals of Operations Research, 154, 29–50.CrossRefGoogle Scholar
  6. Ehrgott, M. (2005). Multicriteria optimization. New York: Springer.Google Scholar
  7. Ehrgott, M., Klamroth, K., & Schwehm, C. (2004). An MCDM approach to portfolio optimization. European Journal of Operational Research, 155, 752–770.CrossRefGoogle Scholar
  8. Ehrgott, M., Shao, L., & Schobel, A. (2011). An approximation algorithm for convex multi-objective programming problems. Journal of Global Optimization, 50, 397–416.CrossRefGoogle Scholar
  9. Engau, A., & Wiecek, M. (2008). Interactive coordination of objective decompositions in multiobjective programming. Management Science, 54(7), 1350–1363.CrossRefGoogle Scholar
  10. Evans, G. W. (1984). An overview of techniques for solving multiobjective mathematical programs. Management Science, 30(11), 1268–1282.CrossRefGoogle Scholar
  11. Fabozzi, F. J., Huang, D., & Zhou, G. (2010). Robust portfolios: Contributions from operations research and finance. Annals of Operations Research, 176, 191–220.CrossRefGoogle Scholar
  12. Ji, R., Lejeune, M. A., & Prasad, S. Y. (2017). Properties, formulations, and algorithms for portfolio optimization using Mean-Gini criteria. Annals of Operations Research, 248(1–2), 305–343.CrossRefGoogle Scholar
  13. Klamroth, K., & Miettinen, K. (2008). Integrating approximation and interactive decision making in multicriteria optimization. Operations Research, 56, 224–234.CrossRefGoogle Scholar
  14. Köksalan, M., & Karasakal, E. (2006). An interactive approach for multiobjective decision making. Journal of the Operational Research Society, 57, 532–540.CrossRefGoogle Scholar
  15. Korhonen, P., Wallenius, J., & Zionts, S. (1984). Solving the discrete multiple criteria problem using convex cones. Management Science, 30, 1336–1345.CrossRefGoogle Scholar
  16. Luque, M., Ruiz, F., & Miettinen, K. (2011). Global formulation for interactive multiobjective optimization. OR Spectrum, 33, 27–48.CrossRefGoogle Scholar
  17. Mackin, P. D., Roy, A., & Wallenius, J. (2011). An interactive weight space reduction procedure for nonlinear multiple objective mathematical programming. Mathematical Programming, 127, 425–444.CrossRefGoogle Scholar
  18. Marcotte, O., & Soland, R. M. (1986). An interactive branch-and-bound algorithm for multiple criteria optimization. Management Science, 32(1), 61–75.CrossRefGoogle Scholar
  19. Markowitz, H. M. (1952). Portfolio selection. Journal of Finance March, 7, 77–91.Google Scholar
  20. Miettinen, K. (1999). Nonlinear multiobjective optimization. Boston: Kluwer Academic Publishers.Google Scholar
  21. Murthy, I., & Olson, D. L. (1994). An interactive procedure using domination cones for bicriterion shortest path problems. European Journal of Operational Research, 72, 417–431.CrossRefGoogle Scholar
  22. Ogryczak, W. (2000). Multiple criteria linear programming model for portfolio selection. Annals of Operations Research, 97, 143–162.CrossRefGoogle Scholar
  23. Ogryczak, W., & Ruszczyński, A. (1999). From stochastic dominance to mean-risk models: Semi-deviations as risk measures. European Journal of Operational Research, 116, 33–50.CrossRefGoogle Scholar
  24. Ogryczak, W., & Ruszczyński, A. (2001). On consistency of stochastic dominance and mean-semideviations models. Mathematical Programming, 89, 217–232.CrossRefGoogle Scholar
  25. Ogryczak, W., & Ruszczyński, A. (2002). Dual stochastic dominance and related mean-risk models. SIAM Journal on Optimization, 13, 60–78.CrossRefGoogle Scholar
  26. Okunev, J. (1988). A comparative study of Gini’s Mean Difference and mean variance in portfolio analysis. Accounting and Finance, 28, 1–15.CrossRefGoogle Scholar
  27. Okunev, J. (1991). The generation of Mean Gini efficient sets. Journal of Business and Accounting, 18(2), 209–218.CrossRefGoogle Scholar
  28. Phelps, S. P., & Köksalan, M. (2003). An interactive evolutionary metaheuristic for multiobjective combinatorial optimization. Management Science, 49(12), 1726–1738.CrossRefGoogle Scholar
  29. Ramesh, R., Karwan, M. H., & Zionts, S. (1989). Preference structure representation using convex cones in multicriteria integer programming. Management Science, 35(9), 1092–1105.CrossRefGoogle Scholar
  30. Roman, D., Darby-Dowman, K., & Mitra, G. (2007). Mean-risk models using two risk measures: A multi-objective approach. Quantitative Finance, 7(4), 443–458.CrossRefGoogle Scholar
  31. Shalit, H., & Yitzhaki, S. (2005). The Mean-Gini efficient portfolio frontier. The Journal of Financial Research, 18, 59–95.CrossRefGoogle Scholar
  32. Steuer, R. E., & Choo, E. U. (1983). An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming, 26(1), 326–344.CrossRefGoogle Scholar
  33. Steuer, R. E., & Na, P. (2003). Multiple criteria decision making combined with finance: A categorized bibliographic study. European Journal of Operational Research, 150(3), 496–515.CrossRefGoogle Scholar
  34. Steuer, R. E., Qi, Y., & Hirschberger, M. (2005). Multiple objectives in portfolio selection. Journal of Financial Decision Making, 1(1), 11–26.Google Scholar
  35. Xidonas, P., Mavrotas, G., & Psarras, J. (2010). Equity portfolio construction and selection using multiobjective mathematical programming. Journal of Global Optimization, 47, 185–209.CrossRefGoogle Scholar
  36. Yitzhaki, S. (1982). Stochastic dominance, mean variance and Gini’s mean difference. American Economic Review, 72, 178–185.Google Scholar
  37. Zopounidis, C., & Doumpos, M. (2002). Multi-criteria decision aid in financial decision making: Methodologies and literature review. Journal of Multi-Criteria Decision Analysis 11, 167–186.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ran Ji
    • 1
  • Miguel A. Lejeune
    • 2
    Email author
  • Srinivas Y. Prasad
    • 2
  1. 1.Department of System Engineering and Operations ResearchGeorge Mason UniversityFairfaxUSA
  2. 2.Department of Decision SciencesThe George Washington UniversityWashington, DCUSA

Personalised recommendations