Stereoscopic PIV

  • Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans


By extending the “classical” single camera PIV implementation with a second camera the planar light sheet can be imaged stereoscopically from two directions allowing the recovery of the velocity vector normal to the light sheet. This chapter on stereo-PIV introduces two primary implementations of stereoscopic imaging along with the concept of Scheimpflug imaging of obliquely viewed light sheet planes. The stereoscopic reconstruction can follow a variety of approaches but collectively rely on some sort of calibration to recover 3-C velocity data from two separate 2-C vector maps. The error introduced through camera misalignment is discussed along with possible mitigation strategies. The application of the stereo-PIV technique in environments with index-of-refraction changes such as in water facilities requires specific imaging arrangements. The chapter closes with a list of recommendations for successful implementation of the stereo-PIV technique.


  1. 1.
    Abdel-Aziz, Y.I., Karara, H.M.: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. In: Symposium on Close-Range Photogrammetry. Falls Church, VA (U.S.A.), pp. 1–18. American Society for Photogrammetry and Remote Sensing (1971). DOI 10.14358/PERS.81.2.103. URL
  2. 2.
    Arroyo, M.P., Greated, C.A.: Stereoscopic particle image velocimetry. Meas. Sci. Technol. 2(12), 1181 (1991). DOI 10.1088/0957-0233/2/12/012. URL
  3. 3.
    Coudert, S.J.M., Schon, J.P.: Back-projection algorithm with misalignment corrections for 2D3C stereoscopic PIV. Meas. Sci. Technol. 12(9), 1371 (2001). DOI 10.1088/0957-0233/12/9/301. URL
  4. 4.
    Ehrenfried, K.: Processing calibration-grid images using the Hough transformation. Meas. Sci. Technol. 13(7), 975 (2002). DOI 10.1088/0957-0233/13/7/303. URL
  5. 5.
    Elsinga, G.E., Scarano, F., Wieneke, B., van Oudheusden, B.W.: Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006). DOI 10.1007/s00348-006-0212-z. URL
  6. 6.
    Faugeras, O.D., Toscani, G.: Camera calibration for 3D computer vision. In: Proceedings of International Workshop on Machine Vision and Machine Intelligence, Tokyo, Japan (1987)Google Scholar
  7. 7.
    Fournel, T., Lavest, J.M., Coudert, S., Collange, F.: Self-calibration of PIV video-cameras in Scheimpflug condition. In: Stanislas, M., Westerweel, J., Kompenhans, J. (eds.) Particle Image Velocimetry: Recent Improvements, pp. 391–405. Springer, Berlin (2004). DOI 10.1007/978-3-642-18795-7_28. URL
  8. 8.
    Gauthier, V., Riethmuller, M.L.: Application of PIDV to complex flows: Measurement of the third component. In: Particle Image Displacement Velocimetry, von Karman Institute for Fluid Dynamics Lecture Series 1988-06. Von Karman Institute, Rhode-Saint-Genèse, Belgium (1988)Google Scholar
  9. 9.
    Gaydon, M., Raffel, M., Willert, C.E., Rosengarten, M., Kompenhans, J.: Hybrid stereoscopic particle image velocimetry. Exp. Fluids 23(4), 331–334 (1997). DOI 10.1007/s003480050118. URL
  10. 10.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, UK (2004). DOI 10.1017/CBO9780511811685. URL
  11. 11.
    Hinsch, K.D.: Three-dimensional particle velocimetry. Meas. Sci. Technol. 6(6), 742 (1995). DOI 10.1088/0957-0233/6/6/012. URL
  12. 12.
    Jähne, B.: Digital Image Processing and Image Formation, 7th edn. Springer, Berlin (2018). URL
  13. 13.
    Kähler, C.J.: The significance of coherent flow structures for the turbulent mixing in wall-bounded flows. Ph.D. thesis, Georg-August-University zu Göttingen (Germany) (2004). URL DLR-FB-2004-24
  14. 14.
    Kähler, C.J., Kompenhans, J.: Fundamentals of multiple plane stereo particle image velocimetry. Exp. Fluids 29(1), S070–S077 (2000). DOI 10.1007/s003480070009. URL
  15. 15.
    Kähler, C.J., Adrian, R.J., Willert, C.E.: Turbulent boundary layer investigations with conventional and stereoscopic particle image velocimetry. In: 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon. Portugal (1998)Google Scholar
  16. 16.
    Kent, J.C., Eaton, A.R.: Stereo photography of neutral density He-filled bubbles for 3-D fluid motion studies in an engine cylinder. Appl. Opt. 21(5), 904–912 (1982). DOI 10.1364/AO.21.000904. URL
  17. 17.
    Klein, F.: Elementarmathematik vom höheren Standpunkt aus, Zweiter Band: Geometrie. Springer, Berlin (1968)Google Scholar
  18. 18.
    Lindken, R., Westerweel, J., Wieneke, B.: Stereoscopic micro particle image velocimetry. Exp. Fluids 41(2), 161–171 (2006). DOI 10.1007/s00348-006-0154-5. URL
  19. 19.
    Prasad, A.K.: Stereoscopic particle image velocimetry. Exp. Fluids 29(2), 103–116 (2000). DOI 10.1007/s003480000143. URL
  20. 20.
    Prasad, A.K., Adrian, R.J.: Stereoscopic particle image velocimetry applied to liquid flows. Exp. Fluids 15(1), 49–60 (1993). DOI 10.1007/BF00195595. URL
  21. 21.
    Prasad, A.K., Jensen, K.: Scheimpflug stereocamera for particle image velocimetry in liquid flows. Appl. Opt. 34(30), 7092–7099 (1995). DOI 10.1364/AO.34.007092. URL
  22. 22.
    Pratt, W.: Digital Image Processing: PIKS Scientific Inside, 4th edn. Wiley-Interscience, Wiley, New York (2007). DOI 10.1002/0470097434. URL
  23. 23.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York, USA (2007). URL
  24. 24.
    Royer, H., Stanislas, M.: Stereoscopic and holographic approaches to get the third velocity component in PIV. Particle Image Velocimetry. von Karman Institute for Fluid Dynamics Lecture Series 1996–03, pp. I1–I56. Von Karman Institute, Rhode-Saint-Genèse, Belgium (1996)Google Scholar
  25. 25.
    Scheimpflug, T.: Improved method and apparatus for the systematic alteration or distortion of plane pictures and images by means of lenses and mirrors for photography and for other purposes (1904). British Patent No. 1196Google Scholar
  26. 26.
    Sinha, S.K.: Improving the accuracy and resolution of particle image or laser speckle velocimetry. Exp. Fluids 6(1), 67–68 (1988). DOI 10.1007/BF00226137. URL
  27. 27.
    Soloff, S.M., Adrian, R.J., Liu, Z.C.: Distortion compensation for generalized stereoscopic particle image velocimetry. Meas. Sci. Technol. 8(12), 1441 (1997). DOI 10.1088/0957-0233/8/12/008. URL
  28. 28.
    Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (1987). DOI 10.1109/JRA.1987.1087109. URL
  29. 29.
    van Doorne, C.W.H.: Stereoscopic PIV on transition in pipe flow. Ph.D. thesis, Delft University of Technology (2004)Google Scholar
  30. 30.
    van Doorne, C.W.H., Westerweel, J.: Measurement of laminar, transitional and turbulent pipe flow using stereoscopic-PIV. Exp. Fluids 42(2), 259–279 (2007). DOI 10.1007/s00348-006-0235-5. URL
  31. 31.
    van Oord, J.: The design of a stereoscopic DPIV-system. Delft University of Technology, Delft (the Netherlands), Technical report (1997)Google Scholar
  32. 32.
    Wieneke, B.: Stereo-PIV using self-calibration on particle images. Exp. Fluids 39(2), 267–280 (2005). DOI 10.1007/s00348-005-0962-z. URL
  33. 33.
    Westerweel, J., Nieuwstadt, F.T.M.: Performance tests on 3-dimensional velocity measurements with a two-camera digital particle-image velocimeter. In: Dybbs, A., Ghorashi, B. (eds.) Laser Anemometry - Advances and Applications 1991, vol. 1, pp. 349–355 (1991)Google Scholar
  34. 34.
    Willert, C.E.: Stereoscopic digital particle image velocimetry for application in wind-tunnel flows. Meas. Sci. Technol. 8, 1465–1479 (1997). DOI 10.1088/0957-0233/8/12/010. URL
  35. 35.
    Willert, C.E.: Assessment of camera models for use in planar velocimetry calibration. Exp. Fluids 41(1), 135–143 (2006). DOI 10.1007/s00348-006-0165-2. URL
  36. 36.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000). DOI 10.1109/34.888718. URL

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations