Image Evaluation Methods for PIV

  • Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans


This chapter covers extensively the methods used to determine the flow velocity starting from the recordings of particle images. After an introduction to the concept of spatial correlation and Fourier methods, an overview of the different PIV evaluation methods is given. Ample discussions devoted to explain the details of the discrete spatial correlation operator in use for PIV interrogation. The main features associated to the FFT implementation (aliasing, displacement range limit and bias error) are discussed. Methods that enhance the correlation signal either in terms of robustness or of accuracy are surveyed. The discussion of ensemble correlation techniques and the use of single-pixel correlation in micro-PIV and macroscopic experiments is a novel addition to the present edition. A detailed description is given of the standard image interrogation based on multigrid image deformation, where the advantages in the treatment of complex flows are discussed as well as the issues in terms of resolution and numerical stability. Another new feature introduced in this chapter is the discussion of the recent developments of algorithms in use for PIV time series as obtained by high-speed PIV systems. Namely, the algorithms to perform Multi frame-PIV, Pyramid Correlation and Fluid Trajectory Correlation and Ensemble Evaluation are treated. Furthermore, a new section that discusses the methods used for individual particle tracking is introduced. The discussion describes the working principles of PTV for planar PIV. The potential of the latter techniques in terms of spatial resolution as well as their limits of applicability in terms of image density are presented.


  1. 1.
    Adrian, R.J.: Statistical properties of particle image velocimetry measurements in turbulent flow. In: 4th International Symposia on Laser Techniques to Fluid Mechanics, (Lisbon, Portugal, 11–14 July) (1988)Google Scholar
  2. 2.
    Agüí, J.C., Jiménez, J.: On the performance of particle tracking. J. Fluid Mech. 185, 447–468 (1987). DOI 10.1017/S0022112087003252. URL
  3. 3.
    Arnold, W., Hinsch, K.D., Mach, D.: Turbulence level measurement by speckle velocimetry. Appl. Opt. 25(3), 330–331 (1986). DOI 10.1364/AO.25.000330. URL
  4. 4.
    Astarita, T.: Analysis of velocity interpolation schemes for image deformation methods in PIV. Exp. Fluids 45(2), 257–266 (2008). DOI 10.1007/s00348-008-0475-7. URL
  5. 5.
    Astarita, T., Cardone, G.: Analysis of interpolation schemes for image deformation methods in PIV. Exp. Fluids 38(2), 233–243 (2005). DOI 10.1007/s00348-004-0902-3. URL
  6. 6.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994). DOI 10.1007/BF01420984. URL
  7. 7.
    Bastiaans, R.J.M., van der Plas, G.A.J., Kieft, R.N.: The performance of a new PTV algorithm applied in super-resolution PIV. Exp. Fluids 32(3), 346–356 (2002). DOI 10.1007/s003480100363. URL
  8. 8.
    Bendat, J.S., Piersol, A.G.: Random Data: Analysis and Measurement Procedures, 4th edn. Wiley, New York (2012). DOI 10.1002/9781118032428. URL
  9. 9.
    Billy, F., David, L., Pineau, G.: Single pixel resolution correlation applied to unsteady flow measurements. Meas. Sci. Technol. 15(6), 1039 (2004). DOI 10.1088/0957-0233/15/6/002. URL
  10. 10.
    Bracewell, R.N.: The Fourier Transform and Its Applications, 3rd edn. Electrical Engineering Series. McGraw Hill, New York (1999)MATHGoogle Scholar
  11. 11.
    Brevis, W., Niño, Y., Jirka, G.H.: Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry. Exp. Fluids 50(1), 135–147 (2011). DOI 10.1007/s00348-010-0907-z. URL
  12. 12.
    Brigham, E.O.: The Fast Fourier Transform. Prentice-Hall Signal Processing Series. Prentice-Hall, Englewood Cliffs (1974)MATHGoogle Scholar
  13. 13.
    Cardwell, N.D., Vlachos, P.P., Thole, K.A.: A multi-parametric particle-pairing algorithm for particle tracking in single and multiphase flows. Meas. Sci. Technol. 22(10), 105,406 (2011). DOI 10.1088/0957-0233/22/10/105406. URL
  14. 14.
    Cenedese, A., Querzoli, G.: PIV for lagrangian scale evaluation in a convective boundary layer. In: Tanida, Y., Miyashiro, H. (eds.) Flow Visualization VI, pp. 863–867. Springer, Berlin (1992). DOI 10.1007/978-3-642-84824-7_155. URL
  15. 15.
    Cierpka, C., Kähler, C.J.: Cross-correlation or tracking - comparison and discussion. In: 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 09–12 July (2012).
  16. 16.
    Cierpka, C., Lütke, B., Kähler, C.J.: Higher order multi-frame particle tracking velocimetry. Exp. Fluids 54(5), 1533 (2013). DOI 10.1007/s00348-013-1533-3. URL
  17. 17.
    Cierpka, C., Scharnowski, S., Kähler, C.J.: Parallax correction for precise near-wall flow investigations using particle imaging. Appl. Opt. 52(12), 2923–2931 (2013). DOI 10.1364/AO.52.002923. URL
  18. 18.
    Cowen, E.A., Monismith, S.G.: A hybrid digital particle tracking velocimetry technique. Exp. Fluids 22(3), 199–211 (1997). DOI 10.1007/s003480050038. URL
  19. 19.
    Dracos, T.: Particle tracking in three-dimensional space. In: Dracos, T. (ed.) Three-Dimensional Velocity and Vorticity Measuring and Image Analysis Techniques. ERCOFTAC Series, vol. 4, pp. 209–227. Springer, Netherlands (1996). DOI 10.1007/978-94-015-8727-3_10. URL
  20. 20.
    Dracos, T.: Particle tracking velocimetry (PTV). In: Dracos, T. (ed.) Three-Dimensional Velocity and Vorticity Measuring and Image Analysis Techniques. ERCOFTAC Series, vol. 4, pp. 155–160. Springer, Netherlands (1996). DOI 10.1007/978-94-015-8727-3_7. URL
  21. 21.
    Fincham, A., Delerce, G.: Advanced optimization of correlation imaging velocimetry algorithms. Exp. Fluids 29(1), S013–S022 (2000). DOI 10.1007/s003480070003. URL
  22. 22.
    Frigo, M., Johnson, S.G.: FFTW: an adaptive software architecture for the FFT. In: Proceedings 1998 IEEE International Conference Acoustics Speech and Signal Processing, vol. 3, pp. 1381–1384. IEEE (1998). DOI 10.1109/ICASSP.1998.681704. URL
  23. 23.
    Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216–231 (2005). DOI 10.1109/JPROC.2004.840301. URL (Special issue on “Program Generation, Optimization, and Platform Adaptation”)
  24. 24.
    Fuchs, T., Hain, R., Kähler, C.J.: Non-iterative double-frame 2D/3D particle tracking velocimetry. Exp. Fluids 58(199). (2017). DOI 10.1007/s00348-017-2404-0. URL
  25. 25.
    Gharib, M., Willert, C.E.: Particle tracing: revisited. In: Gad-el Hak, M. (ed.) Advances in Fluid Mechanics Measurements. Lecture Notes in Engineering, vol. 45, pp. 109–126. Springer, Berlin (1989). DOI 10.1007/978-3-642-83787-6_3. URL
  26. 26.
    Goodman, J.W.: Introduction to Fourier Optics, 4th edn. Macmillan Learning (2017).
  27. 27.
    Grant, I., Liu, A.: Method for the efficient incoherent analysis of particle image velocimetry images. Appl. Opt. 28(10), 1745–1748 (1989). DOI 10.1364/AO.28.001745. URL
  28. 28.
    Guezennec, Y.G., Brodkey, R.S., Trigui, N., Kent, J.C.: Algorithms for fully automated three-dimensional particle tracking velocimetry. Exp. Fluids 17(4), 209–219 (1994). DOI 10.1007/BF00203039. URL
  29. 29.
    Gui, L.C., Merzkirch, W.: A method of tracking ensembles of particle images. Exp. Fluids 21(6), 465–468 (1996). DOI 10.1007/BF00189049. URL
  30. 30.
    Gui, L., Merzkirch, W.: Generating arbitrarily sized interrogation windows for correlation-based analysis of particle image velocimetry recordings. Exp. Fluids 24(1), 66–69 (1998)CrossRefGoogle Scholar
  31. 31.
    Hain, R., Kähler, C.J.: Fundamentals of multiframe particle image velocimetry (PIV). Exp. Fluids 42(4), 575–587 (2007). DOI 10.1007/s00348-007-0266-6. URL
  32. 32.
    Hart, D.P.: PIV error correction. Exp. Fluids 29(1), 13–22 (2000). DOI 10.1007/s003480050421. URL
  33. 33.
    Hart, D.P.: Super-resolution PIV by recursive local-correlation. J. Vis. 3(2), 187–194 (2000). DOI 10.1007/BF03182411. URL
  34. 34.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981). DOI 10.1016/0004-3702(81)90024-2. URL
  35. 35.
    Huang, H.T., Fiedler, H.E., Wang, J.J.: Limitation and improvement of PIV, part II. Particle image distortion, a novel technique. Exp. Fluids 15(4–5), 263–273 (1993). DOI 10.1007/BF00223404. URL
  36. 36.
    Jähne, B.: Digital Image Processing and Image Formation, 7th edn. Springer, Berlin (2018).
  37. 37.
    Jeon, Y.J., Chatellier, L., David, L.: Fluid trajectory evaluation based on an ensemble-averaged cross-correlation in time-resolved PIV. Exp. Fluids 55(7), 1766 (2014). DOI 10.1007/s00348-014-1766-9. URL
  38. 38.
    Kähler, C.J., Scholz, U.: Transonic jet analysis using long-distance micro-PIV. In: 12th International Symposium on Flow Visualization - ISFV 12, Göttingen, Germany (2006)Google Scholar
  39. 39.
    Kähler, C.J., Scholz, U., Ortmanns, J.: Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp. Fluids 41(2), 327–341 (2006). DOI 10.1007/s00348-006-0167-0. URL
  40. 40.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52(6), 1641–1656 (2012). DOI 10.1007/s00348-012-1307-3. URL
  41. 41.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the resolution limit of digital particle image velocimetry. Exp. Fluids 52(6), 1629–1639 (2012). DOI 10.1007/s00348-012-1280-x. URL
  42. 42.
    Kähler, C.J., Astarita, T., Vlachos, P.P., Sakakibara, J., Hain, R., Discetti, S., La Foy, R., Cierpka, C.: Main results of the 4th International PIV Challenge. Exp. Fluids 57(6), 97 (2016). DOI 10.1007/s00348-016-2173-1. URL
  43. 43.
    Keane, R.D., Adrian, R.J.: Optimization of particle image velocimeters. I. double pulsed systems. Meas. Sci. Technol. 1(11), 1202 (1990). DOI 10.1088/0957-0233/1/11/013. URL
  44. 44.
    Keane, R.D., Adrian, R.J.: Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49(3), 191–215 (1992). DOI 10.1007/BF00384623. URL
  45. 45.
    Keane, R.D., Adrian, R.J., Zhang, Y.: Super-resolution particle imaging velocimetry. Meas. Sci. Technol. 6(6), 754 (1995). DOI 10.1088/0957-0233/6/6/013. URL
  46. 46.
    Kitzhofer, J., Westfeld, P., Pust, O., Nonn, T., Maas, H.G., Brücker, C.: Estimation of 3D deformation and rotation rate tensor from volumetric particle data via 3D least squares matching. In: 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 05–08 July 2010 (2010).
  47. 47.
    Lauterborn, W., Kurz, T.: Coherent Optics - Fundamentals and Applications, 2nd edn. Springer, Berlin (2003). DOI 10.1007/978-3-662-05273-0. URL
  48. 48.
    Lei, Y.C., Tien, W.H., Duncan, J., Paul, M., Ponchaut, N., Mouton, C., Dabiri, D.: Rösgen, T., Hove, J.: A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method. Exp. Fluids 53(5), 1251–1268 (2012). DOI 10.1007/s00348-012-1357-6. URL
  49. 49.
    Lourenco, L., Krothapalli, A.: On the accuracy of velocity and vorticity measurements with PIV. Exp. Fluids 18(6), 421–428 (1995). DOI 10.1007/BF00208464. URL
  50. 50.
    Lynch, K., Scarano, F.: A high-order time-accurate interrogation method for time-resolved PIV. Meas. Sci. Technol. 24(3), 16 (2013). DOI 10.1088/0957-0233/24/3/035305. URL
  51. 51.
    Maas, H.G.: Digitale Photogrammetrie in der dreidimensionalen Strömungsmesstechnik. Ph.D. thesis, ETH Zürich (1992)Google Scholar
  52. 52.
    Malik, N.A., Dracos, T., Papantoniou, D.A.: Particle tracking velocimetry in three-dimensional flows. Exp. Fluids 15(4), 279–294 (1993). DOI 10.1007/BF00223406. URL
  53. 53.
    Meinhart, C.D., Wereley, S.T.: Optimum particle size and correlation strategy for sub-micron spatial resolution. In: Joint International PIVNET II/ERCOFTAC Workshop on Micro PIV and Applications in Microsystems, 7–8 April, Delft (the Netherlands) (2005).
  54. 54.
    Meinhart, C.D., Wereley, S.T., Santiago, J.G.: A PIV algorithm for estimating time-averaged velocity fields. J. Fluids Eng. 122(2), 285–289 (2000). DOI 10.1115/1.483256. URL
  55. 55.
    Mejia-Alvarez, R., Christensen, K.T.: Robust suppression of background reflections in PIV images. Meas. Sci. Technol. 24(2), 027,003 (2013). DOI 10.1088/0957-0233/24/2/027003. URL
  56. 56.
    Mendez, M.A., Raiola, M., Masullo, A., Discetti, S., Ianiro, A., Theunissen, R., Buchlin, J.M.: POD-based background removal for particle image velocimetry. Exp. Thermal Fluid Sci. 80, 181–192 (2017). DOI 10.1016/j.expthermflusci.2016.08.021. URL
  57. 57.
    Nobach, H., Honkanen, M.: Two-dimensional gaussian regression for sub-pixel displacement estimation in particle image velocimetry or particle position estimation in particle tracking velocimetry. Exp. Fluids 38(4), 511–515 (2005). DOI 10.1007/s00348-005-0942-3.
  58. 58.
    Nogueira, J., Lecuona, A., Rodríguez, P.A.: Identification of a new source of peak locking, analysis and its removal in conventional and super-resolution piv techniques. Exp. Fluids 30(3), 309–316 (2001). DOI 10.1007/s003480000179. URL
  59. 59.
    Novara, M., Ianiro, A., Scarano, F.: Adaptive interrogation for 3D-PIV. Meas. Sci. Technol. 24, 024012 (2013). DOI 10.1088/0957-0233/24/2/024012. URL
  60. 60.
    Ohmi, K., Li, H.Y.: Particle-tracking velocimetry with new algorithms. Meas. Sci. Technol. 11(6), 603 (2000). DOI 10.1088/0957-0233/11/6/303. URL
  61. 61.
    Okamoto, K., Hassan, Y.A., Schmidl, W.D.: New tracking algorithm for particle image velocimetry. Exp. Fluids 19(5), 342–347 (1995). DOI 10.1007/BF00203419. URL
  62. 62.
    Okamoto, K., Nishio, S., Saga, T., Kobayashi, T.: Standard images for particle-image velocimetry. Meas. Sci. Technol. 11(6), 685 (2000). DOI 10.1088/0957-0233/11/6/311. URL
  63. 63.
    Papoulis, A.: Signal Analysis. McGraw-Hill Inc., New York (1981)MATHGoogle Scholar
  64. 64.
    Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes, 4th edn. McGraw-Hill Education Ltd., New York (2002).
  65. 65.
    Pereira, F., Stüer, H., Graff, E.C., Gharib, M.: Two-frame 3D particle tracking. Meas. Sci. Technol. 17(7), 1680 (2006). DOI 10.1088/0957-0233/17/7/006. URL
  66. 66.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007).
  67. 67.
    Quénot, G.M., Pakleza, J., Kowalewski, T.A.: Particle image velocimetry with optical flow. Exp. Fluids 25(3), 177–189 (1998). DOI 10.1007/s003480050222. URL
  68. 68.
    Reynolds, G.O., DeVelis, J.B., Parrent, G.B., Thompson, B.J.: The New Physical Optics Notebook: Tutorials In Fourier Optics. Optical Engineering Press, Bellingham (1989). DOI 10.1117/3.2303. URL
  69. 69.
    Roesgen, T.: Optimal subpixel interpolation in particle image velocimetry. Exp. Fluids 35(3), 252–256 (2003). DOI 10.1007/s00348-003-0627-8. URL
  70. 70.
    Ronneberger, O., Raffel, M., Kompenhans, J.: Advanced evaluation algorithms for standard and dual plane particle image velocimetry. In: 9th International Symposium on Applications of Lasers to Fluid Mechanics, Lisbon (Portugal) (1998)Google Scholar
  71. 71.
    Rossi, M., Segura, R., Cierpka, C., Kähler, C.J.: On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV. Exp. Fluids 52(4), 1063–1075 (2012). DOI 10.1007/s00348-011-1194-z. URL
  72. 72.
    Ruhnau, P., Schnörr, C.: Optical Stokes flow estimation: an imaging-based control approach. Exp. Fluids 42(1), 61–78 (2007). DOI 10.1007/s00348-006-0220-z. URL
  73. 73.
    Ruhnau, P., Kohlberger, T., Schnörr, C., Nobach, H.: Variational optical flow estimation for particle image velocimetry. Exp. Fluids 38(1), 21–32 (2005). DOI 10.1007/s00348-004-0880-5. URL
  74. 74.
    Sage, D.: Local normalization - filter to reduce the effect on a non-uniform illumination. Technical Report, Biomedical Image Group, EPFL, Switzerland (2011).
  75. 75.
    Santiago, J.G., Wereley, S.T., Meinhart, C.D., Beebe, D.J., Adrian, R.J.: A particle image velocimetry system for microfluidics. Exp. Fluids 25(4), 316–319 (1998). DOI 10.1007/s003480050235. URL
  76. 76.
    Scarano, F.: Iterative image deformation methods in PIV. Meas. Sci. Technol. 13(1), R1 (2002). DOI 10.1088/0957-0233/13/1/201. URL
  77. 77.
    Scarano, F.: Theory of non-isotropic spatial resolution in PIV. Exp. Fluids 35(3), 268–277 (2003). DOI 10.1007/s00348-003-0655-4. URL
  78. 78.
    Scarano, F., Riethmuller, M.L.: Iterative multigrid approach in PIV image processing with discrete window offset. Experiments in Fluids 26(6), 513–523 (1999). DOI 10.1007/s003480050318. URL
  79. 79.
    Scarano, F., Riethmuller, M.L.: Advances in iterative multigrid PIV image processing. Exp. Fluids 29(1), S051–S060 (2000). DOI 10.1007/s003480070007. URL
  80. 80.
    Scharnowski, S., Hain, R., Kähler, C.J.: Reynolds stress estimation up to single-pixel resolution using PIV-measurements. Exp. Fluids 52(4), 985–1002 (2012). DOI 10.1007/s00348-011-1184-1. URL
  81. 81.
    Scholz, U., Kähler, C.J.: Dynamics of flow structures on heaving and pitching airfoils. In: 13th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2006).
  82. 82.
    Schrijer, F.F.J., Scarano, F.: Effect of predictor-corrector filtering on the stability and spatial resolution of iterative PIV interrogation. Exp. Fluids 45(5), 927–941 (2008). DOI 10.1007/s00348-008-0511-7. URL
  83. 83.
    Sciacchitano, A., Scarano, F.: Elimination of PIV light reflections via a temporal high pass filter. Meas. Sci. Technol. 25(8), 084,009 (2014). DOI 10.1088/0957-0233/25/8/084009. URL
  84. 84.
    Sciacchitano, A., Scarano, F., Wieneke, B.: Multi-frame pyramid correlation for time-resolved PIV. Exp. Fluids 53(4), 1087–1105 (2012). DOI 10.1007/s00348-012-1345-x. URL
  85. 85.
    Shavit, U., Lowe, R.J., Steinbuck, J.V.: Intensity capping: a simple method to improve cross-correlation PIV results. Exp. Fluids 42(2), 225–240 (2007). DOI 10.1007/s00348-006-0233-7. URL
  86. 86.
    Soria, J.: An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique. Exp. Thermal Fluid Sci. 12(2), 221–233 (1996). DOI 10.1016/0894-1777(95)00086-0. URL
  87. 87.
    Soria, J., Willert, C.E.: On measuring the joint probability density function of three-dimensional velocity components in turbulent flows. Meas. Sci. Technol. 23(6), 065,301 (2012). DOI 10.1088/0957-0233/23/6/065301. URL
  88. 88.
    Stanislas, M., Okamoto, K., Kähler, C.J.: Main results of the first international PIV challenge. Meas. Sci. Technol. 14(10), R63 (2003). DOI 10.1088/0957-0233/14/10/201. URL
  89. 89.
    Stanislas, M., Okamoto, K., Kähler, C.J., Westerweel, J.: Main results of the second international PIV challenge. Exp. Fluids 39(2), 170–191 (2005). DOI 10.1007/s00348-005-0951-2. URL
  90. 90.
    Stanislas, M., Okamoto, K., Kähler, C.J., Westerweel, J., Scarano, F.: Main results of the third international PIV challenge. Exp. Fluids 45(1), 27–71 (2008). DOI 10.1007/s00348-008-0462-z. URL
  91. 91.
    Stitou, A., Riethmuller, M.L.: Extension of PIV to super resolution using PTV. Meas. Sci. Technol. 12(9), 1398 (2001). DOI 10.1088/0957-0233/12/9/304. URL
  92. 92.
    Takehara, K., Adrian, R.J., Etoh, G.T., Christensen, K.T.: A kalman tracker for super-resolution PIV. Exp. Fluids 29(1), S034–S041 (2000). DOI 10.1007/s003480070005. URL
  93. 93.
    Theunissen, R., Scarano, F., Riethmuller, M.L.: On improvement of PIV image interrogation near stationary interfaces. Exp. Fluids 45(4), 557–572 (2008). DOI 10.1007/s00348-008-0481-9. URL
  94. 94.
    Theunissen, R., Scarano, F., Riethmuller, M.L.: Spatially adaptive PIV interrogation based on data ensemble. Exp. Fluids 48(5), 875–887 (2010). DOI 10.1007/s00348-009-0782-7. URL
  95. 95.
    Thévenaz, P., Blu, T., Unser, M.: Interpolation revisited. IEEE Trans. Med. Imaging 19(7), 739–758 (2000). DOI 10.1109/42.875199. URL
  96. 96.
    Tokumaru, P.T., Dimotakis, P.E.: Image correlation velocimetry. Exp. Fluids 19(1), 1–15 (1995). DOI 10.1007/BF00192228. URL
  97. 97.
    Unser, M.: Splines: a perfect fit for signal and image processing. IEEE Signal Process. Mag. 16(6), 22–38 (1999). DOI 10.1109/79.799930. URL (IEEE Signal Processing Society’s 2000 magazine award)
  98. 98.
    Virant, M., Dracos, T.: Establishment of a videogrammetric PTV system. In: Dracos, T. (ed.) Three-Dimensional Velocity and Vorticity Measuring and Image Analysis Techniques. ERCOFTAC Series, vol. 4, pp. 229–254. Springer, Netherlands (1996). DOI 10.1007/978-94-015-8727-3_11. URL
  99. 99.
    Wereley, S.T., Meinhart, C.D.: Second-order accurate particle image velocimetry. Exp. Fluids 31(3), 258–268 (2001). DOI 10.1007/s003480100281. URL
  100. 100.
    Wereley, S.T., Gui, L., Meinhart, C.D.: Advanced algorithms for microscale particle image velocimetry. AIAA J. 40(6), 1047–1055 (2002). DOI 10.2514/2.1786. URL
  101. 101.
    Wernet, M.P.: Symmetric phase only filtering: a new paradigm for DPIV data processing. Meas. Sci. Technology 16(3), 601 (2005). DOI 10.1088/0957-0233/16/3/001. URL
  102. 102.
    Westerweel, J.: Digital particle image velocimetry: theory and application. Ph.D. thesis, Mechanical Maritime and Materials Engineering, Delft University of Technology, 1993.
  103. 103.
    Westerweel, J., Dabiri, D., Gharib, M.: The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings. Exp. Fluids 23(1), 20–28 (1997). DOI 10.1007/s003480050082. URL
  104. 104.
    Westerweel, J., Geelhoed, P., Lindken, R.: Single-pixel resolution ensemble correlation for micro-PIV applications. Exp. Fluids 37(3), 375–384 (2004). DOI 10.1007/s00348-004-0826-y. URL
  105. 105.
    Willert, C.E.: Stereoscopic digital particle image velocimetry for application in wind-tunnel flows. Meas. Sci. Technol. 8, 1465–1479 (1997). DOI 10.1088/0957-0233/8/12/010. URL
  106. 106.
    Willert, C.E.: Adaptive PIV processing based on ensemble correlation. In: 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon (Portugal) (2008).
  107. 107.
    Willert, C.E., Gharib, M.: Digital particle image velocimetry. Exp. Fluids 10(4), 181–193 (1991). DOI 10.1007/BF00190388. URL
  108. 108.
    Willert, C.E., Jarius, M.: Planar flow field measurements in atmospheric and pressurized combustion chambers. Exp. Fluids 33(6), 931–939 (2002). DOI 10.1007/s00348-002-0515-7. URL
  109. 109.
    Yaroslavsky, L.P.: Digital picture processing: an introduction. Information Sciences, vol. 9. Springer, Berlin (1985). DOI 10.1007/978-3-642-81929-2. URL
  110. 110.
    Yaroslavsky, L.P.: Signal sinc-interpolation: A fast computer algorithm. Bioimaging 4(4), 225–231 (1996). DOI 10.1002/1361-6374(199612)4:4<225::AID-BIO1>3.0.CO;2-G. URL<225::AID-BIO1>3.0.CO;2-G
  111. 111.
    Zhu, Y., Yuan, H., Zhang, C., Lee, C.: Image-preprocessing method for near-wall particle image velocimetry (PIV) image interrogation with very large in-plane displacement. Meas. Sci. Technol. 24(12), 125,302 (2013). DOI 10.1088/0957-0233/24/12/125302. URL

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations