Advertisement

Mathematical Background of Statistical PIV Evaluation

  • Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans
Chapter

Abstract

In this chapter, a simplified mathematical model of the recording and subsequent statistical evaluation of PIV images will be presented. For this purpose the mathematical representation of the particle image locations, the image intensity field and the mean value, the auto-correlation, and the variance of a single exposure recording are described. Then, we analyze the cross-correlation of two frames of singly exposed recordings and expand the theory for the evaluation of doubly exposed recordings.

References

  1. 1.
    Adrian, R.J.: Statistical properties of particle image velocimetry measurements in turbulent flow. In: 4th International Symposium on Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 11–14 July (1988)Google Scholar
  2. 2.
    Adrian, R.J., Westerweel, J.: Particle Image Velocimetry. Cambridge Aerospace Series. Cambridge University Press, New York (2011). URL http://www.cambridge.org/de/academic/subjects/engineering/thermal-fluids-engineering/particle-image-velocimetry
  3. 3.
    Hecht, E., Zajac, A.: Optics. Addison-Wesley Pub. Company, Massachusetts (2001)Google Scholar
  4. 4.
    Keane, R.D., Adrian, R.J.: Optimization of particle image velocimeters. I. Double pulsed systems. Meas. Sci. Technol. 1(11), 1202 (1990). DOI 10.1088/0957-0233/1/11/013. URL http://stacks.iop.org/0957-0233/1/i=11/a=013
  5. 5.
    Keane, R.D., Adrian, R.J.: Optimization of particle image velocimeters: II. Multiple pulsed systems. Meas. Sci. Technol. 2(10), 963 (1991). DOI 10.1088/0957-0233/2/10/013. URL http://stacks.iop.org/0957-0233/2/i=10/a=013
  6. 6.
    Keane, R.D., Adrian, R.J.: Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49(3), 191–215 (1992). DOI 10.1007/BF00384623. URL https://dx.doi.org/10.1007/BF00384623
  7. 7.
    Papoulis, A.: Signal Analysis. McGraw-Hill Inc., New York (1981)Google Scholar
  8. 8.
    Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes. 4th edn. McGraw-Hill Education Ltd., New York (2002). URL http://www.mhhe.com/engcs/electrical/papoulis/
  9. 9.
    Scharnowski, S., Grayson, K., de Silva C., Hutchins, N., Marusic I., and Kähler, C.J.: Generalization of the PIV loss-of-correlation formula introduced by Keane and Adrian. Exp. Fluids 58 (2017). DOI 10.1007/s00348-017-2431-x. URL  https://doi.org/10.1007/s00348-017-2431-x
  10. 10.
    Westerweel, J.: Digital particle image velocimetry: Theory and application. Ph.D. thesis, Mechanical Maritime and Materials Engineering, Delft University of Technology (1993). URL http://repository.tudelft.nl/islandora/object/uuid:85455914-6629-4421-8c77-27cc44e771ed/datastream/OBJ/download
  11. 11.
    Westerweel, J.: Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 8(12), 1379 (1997). DOI 10.1088/0957-0233/8/12/002. URL http://stacks.iop.org/0957-0233/8/i=12/a=002

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations