Related Techniques

  • Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans


As noted in Sect.1.3, PIV developed from Laser Speckle Interferometry. Therefore, one of the early names for this technique was ‘Laser Speckle Velocimetry’ before ‘Particle Image Velocimetry’ was established. The Laser Speckle Interferometry (or Laser Speckle Photography) was mainly developed for the determination of displacement and strain in engineering structures. The laser speckles are created due to random interference of scattered light from an optically rough surface illuminated by coherent light.


  1. 1.
    Asundi, A., Chiang, F.P.: Theory and applications of the white light speckle method for strain analysis. Opt. Eng. 21(4), 214570 (1982). DOI 10.1117/12.7972953. URL
  2. 2.
    Bagai, A., Leishman, J.G.: Flow visualization of compressible vortex structures using density gradient techniques. Exp. Fluids 15(6), 431–442 (1993). DOI 10.1007/BF00191786. URL
  3. 3.
    Bauknecht, A., Ewers, B., Wolf, C., Leopold, F., Yin, J., Raffel, M.: Three-dimensional reconstruction of helicopter blade-tip vortices using a multi-camera bos system. Exp. Fluids 56(1), 1–13 (2014). DOI 10.1007/s00348-014-1866-6Google Scholar
  4. 4.
    Bauknecht, A., Merz, C.B., Raffel, M.: Airborne visualization of helicopter blade tip vortices. J. Vis. 20(1), 139–150 (2016). DOI 10.1007/s12650-016-0389-z. URL
  5. 5.
    Burch, J.M., Tokarski, J.M.J.: Production of multiple beam fringes from photographic scatterers. Opt. Acta: Int. J. Opt. 15(2), 101–111 (1968). DOI 10.1080/713818071. URL
  6. 6.
    Chu, T.C., Ranson, W.F., Sutton, M.A.: Applications of digital-image-correlation techniques to experimental mechanics. Exp. Mech. 25(3), 232–244 (1985). DOI 10.1007/BF02325092. URL
  7. 7.
    Daly, S.H.: Digital image correlation in experimental mechanics for aerospace materials and structures. Encycl. Aerosp. Eng. (2010). DOI 10.1002/9780470686652.eae542. URL
  8. 8.
    Dalziel, S.B., Hughes, G.O., Sutherland, B.R.: Whole-field density measurements by ’synthetic schlieren’. Exp. Fluids 28(4), 322–335 (2000). DOI 10.1007/s003480050391. URL
  9. 9.
    Debrus, S., Françon, M., Grover, C.P., May, M., Roblin, M.L.: Ground glass differential interferometer. Appl. Opti. 11(4), 853–857 (1972). DOI 10.1364/AO.11.000853. URL
  10. 10.
    Dorić, S.: Ray tracing through gradient-index media: recent improvements. Appl. Opt. 29(28), 4026–4029 (1990). DOI 10.1364/AO.29.004026. URL
  11. 11.
    van der Draai, R.K., van Schinkel, R.P.M., Telesca, A.: A new approach to measuring model deflection. In: 18th International Congress on Instrumentation in Aerospace Simulation Facilities, 1999. ICIASF 99, pp. 33/1–33/7 (1999). DOI 10.1109/ICIASF.1999.827173. URL
  12. 12.
    Goldhahn, E., Seume, J.: The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field. Exp. Fluids 43(2–3), 241–249 (2007). DOI 10.1007/s00348-007-0331-1. URL
  13. 13.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, UK (2004). DOI 10.1017/CBO9780511811685. URL
  14. 14.
    Kindler, K., Goldhahn, E., Leopold, F.: Recent developments in background oriented Schlieren methods for rotor blade tip vortex measurements. Exp. Fluids 43(2–3), 233–240 (2007). DOI 10.1007/s00348-007-0328-9. URL
  15. 15.
    Kirmse, T.: Recalibration of a stereoscopic camera system for in-flight wing deformation measurements. Meas. Sci. Technol. 27(5), 054,001 (2016). DOI 10.1088/0957-0233/27/5/054001. URL
  16. 16.
    Köpf, U.: Application of speckling for measuring the deflection of laser light by phase objects. Optic. Commun. 5(5), 347–350 (1972). DOI 10.1016/0030-4018(72)90030-2. URL
  17. 17.
    Li, L.G., Liang, J., Guo, X., Guo, C., Hu, H., Tang, Z.Z.: Full-field wing deformation measurement scheme for in-flight cantilever monoplane based on 3D digital image correlation. Meas. Sci. Technol. 25(6), 065–202 (2014). DOI 10.1088/0957-0233/25/6/065202. URL
  18. 18.
    Mandella, M., Bershader, D.: Quantitative study of the compressible vortex: Generation, structure and interaction with airfoils. In: 25th AIAA Aerospace Sciences Meeting (1987). DOI 10.2514/6.1987-328. URL AIAA Paper 87-328
  19. 19.
    Merzkirch, W.: Flow Visualization, 1st edn. Academic Press, New York (1974)Google Scholar
  20. 20.
    Merzkirch, W.: Flow Visualization, 2nd edn. Academic Press, New York (1987). URL
  21. 21.
    Pan, B., Qian, K., Xie, H., Asundi, A.: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol. 20(6), 17 (2009). DOI 10.1088/0957-0233/20/6/062001. URL
  22. 22.
    Raffel, M.: Background-oriented schlieren (BOS) techniques. Exp. Fluids 56(3), 1–17 (2015). DOI 10.1007/s00348-015-1927-5. URL
  23. 23.
    Raffel, M., Richard, H., Meier, G.E.A.: On the applicability of background oriented optical tomography for large scale aerodynamic investigations. Exp. Fluids 28(5), 477–481 (2000). DOI 10.1007/s003480050408. URL
  24. 24.
    Raffel, M., Tung, C., Richard, H., Yu, Y., Meier, G.E.A.: Background oriented stereoscopic schlieren (boss) for full scale helicopter vortex characterization. In: 9th International Symposium on Flow Visualization, pp. 23–24 (2000)Google Scholar
  25. 25.
    Rastogi, P.K.: Digital Speckle Pattern Interferometry and Related Techniques, vol. 1. Wiley, New York (2000)Google Scholar
  26. 26.
    Richard, H., Raffel, M.: Principle and applications of the background oriented schlieren (BOS) method. Meas. Sci. Technol. 12(9), 1576 (2001). DOI 10.1088/0957-0233/12/9/325. URL
  27. 27.
    Settles, G.S.: Schlieren and shadowgraph imaging in the great outdoors. In: PSFVIP-2 Schlieren and Shadowgraph Techniques; Visualizing Phenomena in Transparent Media, Honolulu (USA) (1999)Google Scholar
  28. 28.
    Sharma, A., Kumar, D.V., Ghatak, A.K.: Tracing rays through graded-index media: a new method. Appl. Opt. 21(6), 984–987 (1982). DOI 10.1364/AO.21.000984. URL
  29. 29.
    Sutton, M.A., Wolters, W.J., Peters, W.H., Ranson, W.F., McNeill, S.R.: Determination of displacements using an improved digital correlation method. Image Vis. Comput. 1(3), 133–139 (1983). DOI 10.1016/0262-8856(83)90064-1. URL
  30. 30.
    Viktin, D., Merzkirch, W.: Speckle-photographic measurements of unsteady flow processes using a highspeed CCD camera. In: 8th International Symposium on Flow Visualization, Sorrento (1998)Google Scholar
  31. 31.
    Weinstein, L.M.: Large field schlieren visualization – from wind tunnels to flight. J. Vis. 2(3), 321–329 (2000). URL
  32. 32.
    Wernekinck, U., Merzkirch, W.: Speckle photography of spatially extended refractive-index fields. Appl. Opt. 26(1), 31–32 (1987). DOI 10.1364/AO.26.000031. URL
  33. 33.
    Withers, P.J.: Strain measurement by digital image correlation. Strain 44(6), 421–422 (2008). DOI 10.1111/j.1475-1305.2008.00556.x. URL

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations