Advertisement

Applications: Volumetric Flow Measurements

  • Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans
Chapter

Abstract

The transition to turbulence in circular jets is a complex three-dimensional process that requires the use of 3D-PIV and temporal resolution for the full understanding the dynamical behavior of coherent vortices. Jets are used in a multitude of engineering systems and their study often regards the process heat and mass transfer.

References

  1. 1.
    Bosbach, J., Kühn, M., Wagner, C.: Large scale particle image velocimetry with helium-filled soap bubbles. Exp. Fluids 46(3), 539–547 (2009). DOI 10.1007/s00348-008-0579-0. URL  https://doi.org/10.1007/s00348-008-0579-0
  2. 2.
    Bridges, J., Wernet, M.P.: The NASA subsonic jet particle image velocimetry (PIV) dataset. NASA/TM-2011-216807 (2011). URL http://turbmodels.larc.nasa.gov/jetsubsonic_val.html
  3. 3.
    Crouch, T.N., Burton, D., Brown, N.A.T., Thompson, M.C., Sheridan, J.: Flow topology in the wake of a cyclist and its effect on aerodynamic drag. J. Fluid Mech. 748, 5–35 (2014). DOI 10.1017/jfm.2013.678. URL  https://doi.org/10.1017/jfm.2013.678
  4. 4.
    Discetti, S., Ianiro, A., Astarita, T., Cardone, G.: On a novel flow cost high accuracy experimental setup for tomographic particle image velocimetry. Meas. Sci Technol. 24(075302) (2013). DOI 10.1088/0957-0233/24/7/075302. URL http://stacks.iop.org/0957-0233/24/i=7/a=075302
  5. 5.
    Gesemann, S., Huhn, F., Schanz, D., Schröder, A.: From noisy particle tracks to velocity, acceleration and pressure fields using B-splines and penalties. In: 18th International Symposium on Applications of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal (2016). URL http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2016/finalworks2016/papers/04.5_4_186paper.pdf
  6. 6.
    Gibertini, G., Grassi, D.: Cycling aerodynamics. In: Nørstrud, H.N. (ed.) Sport Aerodynamics, pp. 23–47. Springer Vienna, Vienna (2008). DOI 10.1007/978-3-211-89297-8\(_3\). URL  https://doi.org/10.1007/978-3-211-89297-8_3
  7. 7.
    Griffith, M.D., Crouch, T., Thompson, M.C., Burton, D., Sheridan, J., Brown, N.A.T.: Computational fluid dynamics study of the effect of leg position on cyclist aerodynamic drag. J. Fluids Eng. 136(10), 101105: American Society of Mechanical Engineers. DOI (2014). DOI 10.1115/1.4027428. URL  https://doi.org/10.1115/1.4027428
  8. 8.
    Elsinga, G.E., Scarano, F., Wieneke, B., van Oudheusden, B.W.: Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006). DOI 10.1007/s00348-006-0212-z. URL  https://doi.org/10.1007/s00348-006-0212-z
  9. 9.
    Elsinga, G.E., Westerweel, J., Scarano, F., Novara, M.: On the velocity of ghost particles and the bias errors in tomographic-PIV. Experiments in Fluids 50(4), 825–838 (2011). DOI 10.1007/s00348-010-0930-0. URL  https://doi.org/10.1007/s00348-010-0930-0
  10. 10.
    Henning, A., Koop, L., Schröder, A.: Causality correlation analysis on a cold jet by means of simultaneous particle image velocimetry and microphone measurements. J. Sound Vib. 332(13), 3148–3162 (2013). DOI 10.1016/j.jsv.2013.01.027. URL http://www.sciencedirect.com/science/article/pii/S0022460X13000758
  11. 11.
    Henning, A., Wrede, B., Schröder, A.: About the ambiguity of noise source localization based on the causality correlation technique. In: 17th International Symposium on Applications of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal (2014). URL http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2014/finalworks2014/papers/02.3_3_319paper.pdf
  12. 12.
    Huhn, F., Schanz, D., Gesemann, S., Schröder, A.: Pressure reconstruction from lagrangian particle tracking with FFT integration. In: 18th International Symposium on Applications of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal (2016)Google Scholar
  13. 13.
    Jux, C., Sciacchitano, A., Schneiders, J.F.G., Scarano, F.: Full-scale cyclist aerodynamics by coaxial volumetric velocimetry. 12th International Symposium on PIV, Busan, Korea (2017)Google Scholar
  14. 14.
    Kähler, C.J., Kompenhans, J.: Fundamentals of multiple plane stereo particle image velocimetry. Exp. Fluids 29(1), S070–S077 (2000)Google Scholar
  15. 15.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52(6), 1641–1656 (2012). DOI 10.1007/s00348-012-1307-3. URL  https://doi.org/10.1007/s00348-012-1307-3
  16. 16.
    Kyle, C.R., Burke, Edmund Improving, the racing bicycle. Mech. Eng. 106(9), 34–45, American Society of Mechanical Engineers 345 E 47TH ST, p. 10017. New York (1984)Google Scholar
  17. 17.
    Lenaers, P., Li, Q., Brethouwer, G., Schlatter, P., Örlü, R.: Negative streamwise velocities and other rare events near the wall in turbulent flows. J. Phys. Conference Ser. 318, 022013, IOP Publishing (2011). DOI 10.1088/1742-6596/318/2/022013. URL http://stacks.iop.org/1742-6596/318/i=2/a=022013
  18. 18.
    Liepmann, D., Gharib, M.: The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245, 643–668 (1992). DOI 10.1017/S0022112092000612. URL  https://doi.org/10.1017/S0022112092000612
  19. 19.
    Maas, H.G., Gruen, A., Papantoniou, D.: Particle tracking velocimetry in threedimensional flows. Exp. Fluids 15(2), 133–146 (1993). DOI 10.1007/BF00190953.  https://doi.org/10.1007/BF00190953
  20. 20.
    Malik, N.A., Dracos, T., Papantoniou, D.A.: Particle tracking velocimetry in three-dimensional flows. Exp. Fluids 15(4), 279–294 (1993). DOI 10.1007/BF00223406. URL  https://doi.org/10.1007/BF00223406
  21. 21.
    Mathis, R., Marusic, I., Chernyshenko, S.I., Hutchins, N.: Estimating wall-shearstress fluctuations given an outer region input. J. Fluid Mech. 715, 163–180 (2013). DOI 10.1017/jfm.2012.508. URL  https://doi.org/10.1017/jfm.2012.508
  22. 22.
    Miguel, E., Henning, A.: Analysis of simultaneous measurement of acoustic pressure in the far-field and density gradient in the near-field in a cold jet. In: 19th AIAA/CEAS Aeroacoustics Conference, Berlin, Germany, pp. 2013–2034 (2013). DOI 10.2514/6.2013-2034. URL  https://doi.org/10.2514/6.2013-2034
  23. 23.
    Melling, A.: Tracer particles and seeding for particle image velocimetry. Meas. Sci. Technol. 8(12), 1406 (1997). DOI 10.1088/0957-0233/8/12/005. URL http://stacks.iop.org/0957-0233/8/i=12/a=005
  24. 24.
    Novara, M., Scarano, F.: A particle-tracking approach for accurate material derivative measurements with tomographic PIV. Exp. Fluids 54(8), 1–12 (2013). DOI 10.1007/s00348-013-1584-5. URL  https://doi.org/10.1007/s00348-013-1584-5
  25. 25.
    Novara, M., Schanz, D., Gesemann, S., Lynch, K., Schröder, A.: Lagrangian 3D particle tracking for multi-pulse systems: performance assessment and application of Shake-The-Box. In: 18th International Symposium on Applications of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal (2016). URL http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2016/finalworks2016/papers/04.5_1_126paper.pdf
  26. 26.
    Novara, M., Schanz, D., Reuther, N., Kähler, C.J., Schröder, A.: Lagrangian 3D particle tracking in high-speed flows: Shake-The-Box for multi-pulse systems. Exp. Fluids 57(8), 128 (2016). DOI 10.1007/s00348-016-2216-7. URL  https://doi.org/10.1007/s00348-016-2216-7
  27. 28.
    Scarano, F.: Tomographic PIV: principles and practice. Meas. Sci. Technol. 24(1), 012001 (2013). DOI 10.1088/0957-0233/24/1/012001. URL  https://doi.org/10.1088/0957-0233/24/1/012001
  28. 29.
    Scarano, F., Ghaemi, S., Caridi, G.C.A., Bosbach, J., Dierksheide, U., Sciacchitano, A.: On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments. Exp. Fluids 56(2), 42 (2015). DOI 10.1007/s00348-015-1909-7. URL  https://doi.org/10.1007/s00348-015-1909-7
  29. 30.
    Sciacchitano, A., Scarano, F.: Elimination of PIV light reflections via a temporal high pass filter. Meas. Sci. Technol. 25(8), 084,009 (2014). DOI 10.1007/s00348-012-1345-x. URL  https://doi.org/10.1007/s00348-012-1345-x
  30. 31.
    Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010). DOI 10.1017/S0022112010003113. URL  https://doi.org/10.1017/S0022112010003113
  31. 32.
    Schanz, D., Gesemann, S., Schröder, A.: Shake-The-Box: Lagrangian particle tracking at high particle image densities. Exp. Fluids 57(5), 1–27 (2016). DOI 10.1007/s00348-016-2157-1. URL  https://doi.org/10.1007/s00348-016-2157-1
  32. 33.
    Schanz, D., Gesemann, S., Schröder, A., Wieneke, B., Novara, M.: Non-uniform optical transfer functions in particle imaging: calibration and application to tomographic reconstruction. Meas. Sci. Technol. 24(2) (2013). DOI 10.1088/0957-0233/24/2/024009. URL http://stacks.iop.org/0957-0233/24/i=2/a=024009
  33. 34.
    Schanz, D., Huhn, F., Gesemann, S., Dierksheide, U., van de Meerendonk, R., Manovski, P., Schröder, A.: Towards high-resolution 3D flow field measurements at the cubic meter scale. In: 18th International Symposium on Applications Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2016). URL http://elib.dlr.de/101290/
  34. 35.
    Schneiders, J.F.G., Scarano, F., Jux, C., Sciacchitano, A.: Coaxial volumetric velocimetry. 12th International Symposium on PIV, Busan, Korea (2017)Google Scholar
  35. 36.
    Schröder, A., Schanz, D., Geisler, R., Gesemann, S., Willert, C.E.: Near-wall turbulence characterization using 4D-PTV “Shake-The-Box". In: 11th International Symposium on Particle Image Velocimetry - PIV2015. Santa Barbara, CA, USA (2015)Google Scholar
  36. 37.
    Schröder, A., Schanz, D., Geisler, R., Willert, C.E., Michaelis, D.: Dual-volume and four-pulse tomo PIV using polarized laser light. In: PIV13; 10th International Symposium on Particle Image Velocimetry, Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, and Faculty of Aerospace Engineering, Delft, The Netherlands (2013). URL http://repository.tudelft.nl/islandora/object/uuid%3A5ee95ec8-02aa-47dd-98a9-ecb4cffeb23a?collection=research
  37. 38.
    Schröder, A., Schanz, D., Michaelis, D., Cierpka, C., Scharnowski, S., Kähler, C.J.: Advances of PIV and 4D-PTV ‘Shake-The-Box’ for turbulent flow analysis—the flow over periodic hills. Flow, Turbul. Combust. 95(2), 193–209 (2015). DOI 10.1007/s10494-015-9616-2. URL  https://doi.org/10.1007/s10494-015-9616-2
  38. 39.
    van Gent, P.L., Michaelis, D., van Oudheusden, B.W., Weiss, P.É., de Kat, R., Laskari, A., Jeon, Y.J., David, L., Schanz, D., Huhn, F., Gesemann, S., Novara, M., McPhaden, C., Neeteson, N.J., Rival, D.E., Schneiders, J.F.G., Schrijer, F.F.J.: Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and Lagrangian particle tracking. Exp. Fluids 58(4), 33 (2017). DOI 10.1007/s00348-017-2324-z. URL  https://doi.org/10.1007/s00348-017-2324-z
  39. 40.
    van Oudheusden, B.W.: PIV-based pressure measurement. Meas. Sci. Technol. 24(3), 032001 (2013). DOI 10.1088/0957-0233/24/3/032001. URL http://stacks.iop.org/0957-0233/24/i=3/a=032001
  40. 41.
    Violato, D., Scarano, F.: Three-dimensional evolution of flow structures in transitional circular and chevron jets. Phys. Fluids 23(12), 124104 (2011). DOI 10.1063/1.3665141. URL  https://doi.org/10.1063/1.3665141
  41. 42.
    Violato, D., Scarano, F.: Three-dimensional vortex analysis and aeroacoustic source characterization of jet core breakdown. Phys. Fluids 25(015112), 1 (2013). DOI 10.1063/1.4773444. URL  https://doi.org/10.1063/1.4773444
  42. 43.
    Wieneke, B.: Volume self-calibration for 3D particle image velocimetry. Exp. Fluids 45(4), 549–556 (2008). DOI 10.1007/s00348-008-0521-5. URL  https://doi.org/10.1007/s00348-008-0521-5
  43. 44.
    Wieneke, B.: Iterative reconstruction of volumetric particle distribution. Meas. Sci. Technol. 24(2) (2013). DOI 10.1088/0957-0233/24/2/024008. URL http://stacks.iop.org/0957-0233/24/i=2/a=024008

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations