Advertisement

Applications: Micro PIV

  • Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans
Chapter

Abstract

This section discusses various applications and techniques used in \(\mu \text {PIV}\). The applications include very high spatial resolution measurements of pressure-driven flow in a rectangular capillary and measurements in a challenging toroidal vortex.

References

  1. 1.
    Axelrod, D., Burghardt, T.P., Thompson, N.L.: Total internal reflection fluorescence. Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984). DOI 10.1146/annurev.bb.13.060184.001335. URL  https://doi.org/10.1146/annurev.bb.13.060184.001335
  2. 2.
    Baczyzmalski, D., Karnbach, F., Yang, X., Mutschke, G., Uhlemann, M., Eckert, K., Cierpka, C.: On the electrolyte convection around a hydrogen bubble evolving at a microelectrode under the influence of a magnetic field. J. Electrochem. Soc. 163(9), E248–E257 (2016). DOI 10.1149/2.0381609jes. URL https://jes.ecsdl.org/content/163/9/E248.abstract
  3. 3.
    Baczyzmalski, D., Karnbach, F., Mutschke, G., Yang, X., Eckert, K., Uhlemann, M., Cierpka, C.: Growth and detachment of single hydrogen bubbles in a magnetohydrodynamic shear flow. Phys. Rev. Fluids 2(9), 093701 (2017), American Physical Society. DOI 10.1103/PhysRevFluids.2.093701, URL https://link.aps.org/doi/10.1103/PhysRevFluids.2.093701
  4. 4.
    Baczyzmalski, D., Weier, T., Kähler, C.J., Cierpka, C.: Near-wall measurements of the bubble-and Lorentz-force-driven convection at gas-evolving electrodes. Exp. Fluids 56(8), 1–13 (2015). DOI 10.1007/s00348-015-2029-0. URL  https://doi.org/10.1007/s00348-015-2029-0
  5. 5.
    Balzer, R., Vogt, H.: Effect of electrolyte flow on the bubble coverage of vertical gas-evolving electrodes. J. Electrochem. Soc. 150(1), E11–E16 (2003). DOI 10.1149/1.1524185. URL https://jes.ecsdl.org/content/150/1/E11.abstract
  6. 6.
    Barnkob, R., Nama, N., Ren, L., Huang, T.J., Costanzo, F., Kähler, C.J.: Acoustically driven fluid and particle motion in confined and leaky systems. Phys. Rev. Appl. 9(1), 014027 (2018)Google Scholar
  7. 7.
    Barz, D.P., Zadeh, H.F., Ehrhard, P.: Measurements and simulations of time-dependent flow fields within an electrokinetic micromixer. J. Fluid Mech. 676, 265–293 (2011). DOI 10.1017/jfm.2011.44. URL  https://doi.org/10.1017/jfm.2011.44
  8. 8.
    Bendat, J.S., Piersol, A.G.: Random Data: Analysis and Measurement Procedures, 4th edn. Wiley, New York (2012). DOI 10.1002/9781118032428. URL  https://doi.org/10.1002/9781118032428
  9. 9.
    Bolaños-Jiménez, R., Rossi, M., Rivas, D.F., Kähler, C.J., Marin, A.: Streaming flow by oscillating bubbles: quantitative diagnostics via particle tracking velocimetry. J. Fluid Mech. 820, 529–548 (2017)Google Scholar
  10. 10.
    Bourdon, C.J., Olsen, M.G., Gorby, A.D.: The depth of correlation in micro-PIV for high numerical aperture and immersion objectives. J. Fluids Eng. 128(4), 883–886 (2006). DOI 10.1115/1.2201649. URL  https://doi.org/10.1115/1.2201649
  11. 11.
    Cevheri, N., Yoda, M.: Evanescent-wave particle velocimetry studies of combined electroosmotic and Poiseuille flow. In: Proceedings of the 10th International Symposium on Particle Image Velocimetry (PIV13). Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, and Faculty of Aerospace Engineering (2013). DOI 10.1115/MNHMT2012-75274. URL https://doi.org/10.1115/MNHMT2012-75274
  12. 12.
    Cierpka, C., Kähler, C.J.: Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics. J. Vis. 15(1), 1–31 (2012). DOI 10.1007/s12650-011-0107-9. URL  https://doi.org/10.1007/s12650-011-0107-9
  13. 13.
    Cierpka, C., Lütke, B., Kähler, C.J.: Higher order multi-frame particle tracking velocimetry. Exp. Fluids 54(5), 1533 (2013). DOI 10.1007/s00348-013-1533-3. URL  https://doi.org/10.1007/s00348-013-1533-3
  14. 14.
    Cierpka, C., Rossi, M., Segura, R., Mastrangelo, F., Kähler, C. J.: A comparative analysis of the uncertainty of astigmatism-\(\mu \)PTV, stereo-\(\mu \)PIV, and \(\mu \)PIV. Exp. Fluids 52(3), 605–615 (2012)Google Scholar
  15. 15.
    Cierpka, C., Segura, R., Hain, R., Kähler, C.J.: A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics. Meas. Sci. Technol. 21(4), 045401 (2010)Google Scholar
  16. 16.
    Choban, E.R., Markoski, L.J., Wieckowski, A., Kenis, P.J.A.: Microfluidic fuel cell based on laminar flow. J. Power Sources 128(1), 54–60 (2004)Google Scholar
  17. 17.
    Deen, W.: Analysis of Transport Phenomena, Topics in Chemical Engineering, 2nd edn. Oxford University Press, New York (2012). URL https://global.oup.com/academic/product/analysis-of-transport-phenomena-9780199740253?cc=de&lang=en&
  18. 18.
    Dutta, P., Beskok, A.: Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: Finite Debye layer effects. Anal. Chem. 73(9), 1979–1986 (2001)Google Scholar
  19. 19.
    Gui, L., Merzkirch, W.: Generating arbitrarily sized interrogation windows for correlation-based analysis of particle image velocimetry recordings. Exp. Fluids 24(1), 66–69 (1998)Google Scholar
  20. 20.
    Hertlein, C., Riefler, N., Eremina, E., Wriedt, T., Eremin, Y., Helden, L., Bechinger, C.: Experimental verification of an exact evanescent light scattering model for TIRM. Langmuir 24(1), 1–4 (2008). DOI 10.1021/la703322d. URL  https://doi.org/10.1021/la703322d
  21. 21.
    Huang, P., Breuer, K.S.: Direct measurement of anisotropic near-wall hindered diffusion using total internal reflection velocimetry. Phys. Rev. E 76(4), 046,307 (2007). DOI 10.1103/PhysRevE.76.046307. URL https://doi.org/10.1103/PhysRevE.76.046307
  22. 22.
    Huang, P., Guasto, J.S., Breuer, K.S.: Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry. J. Fluid Mech. 566, 447–464 (2006). DOI 10.1115/IMECE2005-79938. URL  https://doi.org/10.1115/IMECE2005-79938
  23. 23.
    Huang, P., Guasto, J.S., Breuer, K.S.: The effects of hindered mobility and depletion of particles in near-wall shear flows and the implications for nanovelocimetry. J. Fluid Mech. 637, 241–265 (2009). DOI 10.1017/S0022112009990656. URL  https://doi.org/10.1017/S0022112009990656
  24. 24.
    Inoué, S., Spring, K.R.: Video Microscopy: The Fundamentals, 2nd edn. Language of Science. Springer, New York (1997)CrossRefGoogle Scholar
  25. 25.
    Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press (1992). URL http://www.sciencedirect.com/science/book/9780123751829
  26. 26.
    Jin, S., Huang, P., Park, J., Yoo, J.Y., Breuer, K.S.: Near-surface velocimetry using evanescent wave illumination. Exp. Fluids 37(6), 825–833 (2004). DOI 10.1007/s00348-004-0870-7. URL  https://doi.org/10.1007/s00348-004-0870-7
  27. 27.
    Kähler, C.J., Astarita, T., Vlachos, P.P., Sakakibara, J., Hain, R., Discetti, S., La Foy, R., Cierpka, C.: Main results of the 4th International PIV Challenge. Exp. Fluids 57(6), 97 (2016). DOI 10.1007/s00348-016-2173-1. URL  https://doi.org/10.1007/s00348-016-2173-1
  28. 28.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52(6), 1641–1656 (2012). DOI 10.1007/s00348-012-1307-3. URL http://dx.doi.org/10.1007/s00348-012-1307-3
  29. 29.
    Kauffmann, P., Loire, S., Mezic, I., Meinhart, C.: Proper orthogonal decomposition based 3d micropiv: application to electrothermal flow study. In: PIV13; 10th International Symposium on Particle Image Velocimetry, Delft, The Netherlands, July 1-3, 2013. Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, and Faculty of Aerospace Engineering (2013)Google Scholar
  30. 30.
    Kazoe, Y., Yoda, M.: Experimental study of the effect of external electric fields on interfacial dynamics of colloidal particles. Langmuir 27(18), 11481–11488 (2011). DOI 10.1021/la202056b. URL  https://doi.org/10.1021/la202056b
  31. 31.
    Kazoe, Y., Yoda, M.: Measurements of the near-wall hindered diffusion of colloidal particles in the presence of an electric field. Appl. Phys. Lett. 99(12), 124,104 (2011). DOI 10.1063/1.3643136. URL https://doi.org/10.1063/1.3643136
  32. 32.
    Kihm, K., Banerjee, A., Choi, C., Takagi, T.: Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3D RTIRFM). Exp. Fluids 37(6), 811–824 (2004). DOI 10.1007/s00348-004-0865-4. URL  https://doi.org/10.1007/s00348-004-0865-4
  33. 33.
    Kloosterman, A., Hierck, B., Westerweel, J., Poelma, C.: Quantification of blood flow and topology in developing vascular networks. PloS One 9(5), e96,856 (2014). DOI 10.1371/journal.pone.0096856. URL  https://doi.org/10.1371/journal.pone.0096856
  34. 34.
    Kumar, A., Cierpka, C., Williams, S.J., Kähler, C.J., Wereley, S.T.: 3D3C velocimetry measurements of an electrothermal microvortex using wavefront deformation PTV and a single camera. Microfluidics and Nanofluidics. 10(2), 355–365 (2011)Google Scholar
  35. 35.
    Kwon, J.S., Wereley, S.T.: Light-actuated electrothermal microfluidic motion: experimental investigation and physical interpretation. Microfluid. Nanofluidics 19(3), 609–619 (2015)CrossRefGoogle Scholar
  36. 36.
    Li, H., Yoda, M.: An experimental study of slip considering the effects of non-uniform colloidal tracer distributions. J. Fluid Mech. 662, 269–287 (2010). DOI 10.1017/S0022112010003198. URL  https://doi.org/10.1017/S0022112010003198
  37. 37.
    Li, H.F., Yoda, M.: Multilayer nano-particle image velocimetry (MnPIV) in microscale Poiseuille flows. Meas. Sci. Technol. 19(7), 075,402 (2008). DOI 10.1088/0957-0233/19/7/075402. URL https://doi.org/10.1088/0957-0233/19/7/075402
  38. 38.
    Li, Z., Déramo, L., Lee, C., Monti, F., Yonger, M., Tabeling, P., Chollet, B., Bresson, B., Tran, Y.: Near-wall nanovelocimetry based on total internal reflection fluorescence with continuous tracking. J. Fluid Mech. 766, 147–171 (2015). DOI 10.1017/jfm.2015.12. URL  https://doi.org/10.1017/jfm.2015.12
  39. 39.
    Lubetkin, S.: The motion of electrolytic gas bubbles near electrodes. Electrochimica Acta 48(4), 357–375 (2002). DOI 10.1016/S0013-4686(02)00682-5. URL https://www.sciencedirect.com/science/article/pii/S0013468602006825
  40. 40.
    Marin, A., Liepelt, R., Rossi, M., Kähler, C. J.: Surfactant-driven flow transitions in evaporating droplets. Soft Matter 12(5), 1593–1600 (2016)Google Scholar
  41. 41.
    Marin, A., Rossi, M., Rallabandi, B., Wang, C., Hilgenfeldt, S., Kähler, C. J.: Three-dimensional phenomena in microbubble acoustic streaming. Phys. Rev. Appl. 3(4), 041001 (2015)Google Scholar
  42. 42.
    Mastrangelo, F., Rossi, M., Cierpka, C., Kähler, C.J., Pennella, F., Rasponi, M., Piraino, F., Redaelli, A., Morbiducci, U.: Reconstruction of the interface between two fluids in microfluidic-mixers using astigmatic particle imaging, 2nd European Conference in Microfluidics, Toulouse, France, December 8–10 (2010)Google Scholar
  43. 43.
    Meinhart, C.D., Wereley, S.T., Santiago, J.G.: PIV measurements of a microchannel flow. Exp. Fluids 27(5), 414–419 (1999). DOI 10.1007/s003480050366. URL  https://doi.org/10.1007/s003480050366
  44. 44.
    Meinhart, C.D., Wereley, S.T., Santiago, J.G.: A PIV algorithm for estimating time-averaged velocity fields. J. Fluids Eng. 122(2), 285–289 (2000). DOI 10.1115/1.483256. URL  https://doi.org/10.1115/1.483256
  45. 45.
    Monazami, R., Manzari, M.T.: Analysis of combined pressure-driven electroosmotic flow through square microchannels. Microfluid. Nanofluidics 3(1), 123–126 (2007). DOI 10.1007/s10404-005-0065-4. URL  https://doi.org/10.1007/s10404-005-0065-4
  46. 46.
    Morgan, H., Green, N.G.: AC electrokinetics. Research Studies Press, (2003)Google Scholar
  47. 47.
    Muller, P. B., Rossi, M., Marin, A., Barnkob, R., Augustsson, P., Laurell, T., Kähler, C.J., Bruus, H.: Ultrasound-induced acoustophoretic motion of microparticles in three dimensions. Phys. Rev. E 88(2), 023006 (2013)Google Scholar
  48. 48.
    Needham, J.A., Sharp, J.S.: Watch your step! A frustrated total internal reflection approach to forensic footwear imaging. Sci. Rep. 6 (2016). DOI 10.1038/srep21290. URL  https://doi.org/10.1038/srep21290
  49. 49.
    Nguyen, N.T., Wu, Z.G.: Micromixers—a review. J. Micromech. Microeng. 15(2), R1–R16 (2004)Google Scholar
  50. 50.
    Poelma, C., Van der Heiden, K., Hierck, B.P., Poelmann, R.E., Westerweel, J.: Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart. J. R. Soc. Interface 7(42), 91–103 (2010). DOI 10.1098/rsif.2009.0063. URL  https://doi.org/10.1098/rsif.2009.0063
  51. 51.
    Poelma, C., Hierck, B.P.: Hemodynamics in the developing cardiovascular system. In: Becker, S., Kuznetsov, A. (eds.) Heat Transfer and Fluid Flow in Biological Processes, pp. 371–405. Academic Press (2015). DOI 10.1016/B978-0-12-408077-5.00013-4. URL https://doi.org/10.1016/B978-0-12-408077-5.00013-4
  52. 52.
    Poelma, C., Kloosterman, A., Hierck, B.P., Westerweel, J.: Accurate blood flow measurements: are artificial tracers necessary? PloS One 7(9), e45,247 (2012). DOI 10.1371/journal.pone.0045247. URL  https://doi.org/10.1371/journal.pone.0045247
  53. 53.
    Poelma, C., Vennemann, P., Lindken, R., Westerweel, J.: In vivo blood flow and wall shear stress measurements in the vitelline network. Exp. Fluids 45(4), 703–713 (2008). DOI 10.1007/s00348-008-0476-6. URL  https://doi.org/10.1007/s00348-008-0476-6
  54. 54.
    Pouya, S., Koochesfahani, M., Snee, P., Bawendi, M., Nocera, D.: Single quantum dot (QD) imaging of fluid flow near surfaces. Exp. Fluids 39(4), 784–786 (2005). DOI 10.1007/s00348-005-0004-x. URL  https://doi.org/10.1007/s00348-005-0004-x
  55. 55.
    Ramos, A., Morgan, H., Green, N.G., Castellanos, A.: Ac electrokinetics: a review of forces in microelectrode structures. J. Phys. D: Appl. Phys. 31(18), 2338 (1998)CrossRefGoogle Scholar
  56. 56.
    Rossi, M., Cierpka, C., Segura, R., Kähler, C.J.: Volumetric reconstruction of the 3D boundary of stream tubes with general topology using tracer particles. Meas. Sci. Technol. 22(10), 105405 (2011)Google Scholar
  57. 57.
    Rossi, M., Kähler, C.J.: Experimental characterization of the effect of Dean vortices on microfluidic fuel cells, 4th European Conference in Microfluidics, Limerick, Ireland, December 10–12 (2014)Google Scholar
  58. 58.
    Rossi, M., Kähler, C.J.: Optimization of astigmatic particle tracking velocimeters. Exp. Fluids 55(9), 1–13 (2014)Google Scholar
  59. 59.
    Rossi, M., Segura, R., Cierpka, C., Kähler, C.J.: On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV. Exp. Fluids 52(4), 1063–1075 (2012). DOI 10.1007/s00348-011-1194-z. URL  https://doi.org/10.1007/s00348-011-1194-z
  60. 60.
    Sadr, R., Anoop, K., Khader, R.: Effects of surface forces and non-uniform out-of-plane illumination on the accuracy of nPIV velocimetry. Meas. Sci. Technol. 23(5), 055,303 (2012). DOI 10.1088/0957-0233/23/5/055303. URL http://stacks.iop.org/0957-0233/23/i=5/a=055303?key=crossref.0d604a3da34abe9a910046b1125f2779
  61. 61.
    Sadr, R., Hohenegger, C., Li, H., Mucha, P.J., Yoda, M.: Diffusion-induced bias in near-wall velocimetry. J. Fluid Mech. 577, 443–456 (2007). DOI 10.1007/s00348-008-0491-7. URL  https://doi.org/10.1007/s00348-008-0491-7
  62. 62.
    Sadr, R., Yoda, M., Zheng, Z., Conlisk, A.T.: An experimental study of electro-osmotic flow in rectangular microchannels. J. Fluid Mech. 506, 357–367 (2004). DOI 10.1017/S0022112004008626. URL  https://doi.org/10.1017/S0022112004008626
  63. 63.
    Squires, T.M., Quake, S.R.: Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977–1026 (2005)Google Scholar
  64. 64.
    Stroock, A.D., Dertinger, S.K., Ajdari, A., Mezić, I., Stone, H.A., Whitesides, G.M.: Chaotic mixer for microchannels. Science 295(5555), 647–651 (2002)Google Scholar
  65. 65.
    Vennemann, P., Kiger, K., Lindken, R., Groenendijk, B.C.W., Stekelenburg-de Vos, S., ten Hagen, T.L.M., Ursem, N.T.C., Poelmann, R.E., Westerweel, J., Hierck, B.P.: In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. J. Biomech. 39(7), 1191–1200 (2006). DOI 10.1016/j.jbiomech.2005.03.015. URL  https://doi.org/10.1016/j.jbiomech.2005.03.015
  66. 66.
    Wang, W., Huang, P.: Hybrid algorithm for extracting accurate tracer position distribution in evanescent wave nano-velocimetry. Exp. Fluids 57(2), 1–8 (2016). DOI 10.1007/s00348-016-2116-x. URL  https://doi.org/10.1007/s00348-016-2116-x
  67. 67.
    Weier, T., Landgraf, S.: The two-phase flow at gas-evolving electrodes: Bubble-driven and Lorentz-force-driven convection. Eur. Phys. J. Spec. Top. 220(1), 313–322 (2013). DOI 10.1140/epjst/e2013-01816-1. URL  https://doi.org/10.1140/epjst/e2013-01816-1
  68. 68.
    Wereley, S.T., Gui, L., Meinhart, C.D.: Advanced algorithms for microscale particle image velocimetry. AIAA J. 40(6), 1047–1055 (2002). DOI 10.2514/2.1786. URL https://arc.aiaa.org/doi/abs/10.2514/2.1786
  69. 69.
    Wereley, S.T., Meinhart, C.D.: Recent advances in micro-particle image velocimetry. Annu. Rev. Fluid Mech. 42 (2010). DOI 10.1146/annurev-fluid-121108-145427. URL  https://doi.org/10.1146/annurev-fluid-121108-145427
  70. 70.
    Westerweel, J., Geelhoed, P., Lindken, R.: Single-pixel resolution ensemble correlation for micro-PIV applications. Exp. Fluids 37(3), 375–384 (2004). DOI 10.1007/s00348-004-0826-y. URL  https://doi.org/10.1007/s00348-004-0826-y
  71. 71.
    Yoda, M., Cevheri, N.: Using shear and DC electric fields to manipulate and self-assemble dielectric particles on microchannel walls. In: Journal of Nanotechnology in Engineering and Medicine, pp. V007T09A012–V007T09A012. American Society of Mechanical Engineers (2014). DOI 10.1115/IMECE2014-37547. URL  https://doi.org/10.1115/IMECE2014-37547
  72. 72.
    Zettner, C.M., Yoda, M.: Particle velocity fieldmeasurements in a near-wall flowusing evanes centwave illumination. Exp. Fluids 34(1), 115–121 (2003). DOI 10.1007/s00348-002-0541-5. URL  https://doi.org/10.1007/s00348-002-0541-5

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations