Applications: Aeroacoustic and Pressure Measurements

  • Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans


In the research field of aeroacoustics, fluctuations in turbulent flows which are part of a sound generating process can be identified by means of the so-called causality correlation technique [5,6,29]. In this approach, the coefficient matrix resulting from the calculated correlation coefficients between the acoustic pressure fluctuations in the far field and velocity fluctuations in a turbulent flow field is analysed. The temporal resolution of the coefficient matrix is set by the sampling rate of the pressure signal in the far field. The spatial resolution is determined by the spatial sampling rate of the measured flow quantity (Table  11.22).


  1. 1.
    Amiet, R.: Noise due to turbulent flow past a trailing edge. J. Sound Vib. 47(3), 387–393 (1976). DOI 10.1016/0022-460X(76)90948-2. URL
  2. 2.
    Avallone, F., Arce Leon, C., Pröbsting, S., Lynch, K., Ragni, D.: Tomographic-PIV investigation of the flow over serrated trailing-edges. In: 54th AIAA Aerospace Sciences Meeting, pp. 1–14. AIAA SciTech Forum (2016). DOI 10.2514/6.2016-1012. URL
  3. 3.
    Doolan, C., Moreau, D., Brooks, L.: Wind turbine noise mechanisms and some concepts for its control. Acoust. Aust. 40(1), 7–13 (2012). URL
  4. 4.
    Ellington, C.P., van den Berg, C., Willmott, A.P., Thomas, A.L.R.: Leading-edge vortices in insect flight. Nature 384(6610), 626–630 (1996). DOI 10.1038/384626a0. URL
  5. 5.
    Henning, A., Kaepernick, K., Ehrenfried, K., Koop, L., Dillmann, A.: Investigation of aeroacoustic noise generation by simultaneous particle image velocimetry and microphone measurements. Exp. Fluids 348, 1073–1085 (2008). DOI 10.1007/s00348-008-0528-y. URL
  6. 6.
    Henning, A., Koop, L., Schröder, A.: Causality correlation analysis on a cold jet by means of simultaneous particle image velocimetry and microphone measurements. J. Sound Vib. 332(13), 3148–3162 (2013). DOI URL
  7. 7.
    Henning, A., Wrede, B., Geisler, R.: Aeroacoustic investigation of a high-lift device by means of synchronized PIV and microphone measurements. In: 16th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2012). URL
  8. 8.
    Herr, M., Dobrzynski, W.: Experimental investigations in low noise trailing edge design. In: 10th AIAA/CEAS Aeroacoustics Conference, Manchester (England), 2004 (2004). DOI 10.2514/1.11101. URL
  9. 9.
    Herr, M., Dobrzynski, W.: Experimental investigations in low-noise trailing edge design. AIAA J. 43(6), 1167–1175 (2005). DOI 10.2514/1.11101. URL
  10. 10.
    Howe, M.S.: A review of the theory of trailing edge noise. J. Sound Vib. 61(3), 437–465 (1978). DOI 10.1016/0022-460X(78)90391-7. URL
  11. 11.
    Jardin, T., David, L.: Spanwise gradients in flow speed help stabilize leading-edge vortices on revolving wings. Phys. Rev. E 90(1), 013011 (2014). DOI 10.1103/PhysRevE.90.013011. URL
  12. 12.
    Lentink, D., Dickinson, M.H.: Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Exp. Biol. 212(16), 2705–2719 (2009). DOI 10.1242/jeb.022269. URL
  13. 13.
    Maxworthy, T.: Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. dynamics of the ‘fling’. J. Fluid Mech. 93(1), 47–63 (1979). DOI 10.1017/S0022112079001774. URL
  14. 14.
    van de Meerendonk, R., Percin, B., van Oudheusden, B.: Three-dimensional flow and load characteristics of flexible revolving wings at low Reynolds number. In: 18th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon (Portugal) (2016). URL
  15. 15.
    Moehring, W.: Modelling low mach number noise. In: Mueller, E.A. (ed.) Mechanics of Sound Generation in Flows, pp. 85–96. Springer (1979). URL
  16. 16.
    Oerlemans, S., Fisher, M., Maeder, T., Kögler, K.: Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations. AIAA J. 47(6), 1470–1481 (2009). DOI 10.2514/1.38888. URL
  17. 17.
    Percin, M.: Aerodynamic mechanisms of flapping flight. Ph.D. thesis, Delft University of Technology (2015). DOI 10.4233/uuid:4d535d87-d11e-4916-9143-5e6762c56152. URL
  18. 18.
    Percin, M., Hu, Y., van Oudheusden, B., Scarano, F.: Wing flexibility effects in clap-and-fling. Int. J. Micro Air Veh. 3(4), 217–227 (2011). DOI 10.1260/1756-8293.3.4.217. URL
  19. 19.
    Percin, M., van Oudheusden, B.W.: Three-dimensional flow structures and unsteady forces on pitching and surging revolving flat plates. Exp. Fluids 56(2), 47 (2015). DOI 10.1007/s00348-015-1915-9. URL
  20. 20.
    Pott-Pollenske, M., Delfs, J.: Enhanced capabilities of the aeroacoustic wind tunnel Braunschweig. In: 29th AIAA Aeroacoustics Conference, Vancouver, Canada, vol. 2910 (2008). DOI 10.2514/6.2008-2910. URL
  21. 21.
    Powell, A.: Theory of vortex sound. J. Acoust. Soc. Am. 36(1), 177–195 (1964). DOI 10.1121/1.1918931. URL
  22. 22.
    Pröbsting, S., Schneiders, J.F., Avallone, F., Ragni, D., Scarano, F.: Trailing-edge noise diagnostics with low-repetition-rate PIV. In: 22nd AIAA/CEAS Aeroacoustics Conference, 3023 (2016). DOI 10.2514/6.2016-3023. URL
  23. 23.
    Pröbsting, S., Tuinstra, M., Scarano, F.: Trailing edge noise estimation by tomographic particle image velocimetry. J. Sound Vib. 346, 117–138 (2015). DOI 10.1016/j.jsv.2015.02.018. URL
  24. 24.
    Ragni, D., Ashok, A., van Oudheusden, B.W., Scarano, F.: Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry. Meas. Sci. Technol. 20(7), 074,005 (2009). DOI 10.1088/0957-0233/20/7/074005. URL
  25. 25.
    Ragni, D., van Oudheusden, B.W., Scarano, F.: 3D pressure imaging of an aircraft propeller blade-tip flow by phase-locked stereoscopic PIV. Exp. Fluids 52(2), 463–477 (2012). 10.10007/s00348-011-1236-6. URL
  26. 26.
    Ragni, D., Schrijer, F., van Oudheusden, B.W., Scarano, F.: Particle tracer response across shocks measured by PIV. Exp. Fluids 50(1), 53–64 (2011). DOI 10.1007/s00348-010-0892-2. URL
  27. 27.
    Roger, M., Moreau, S.: Back-scattering correction and further extensions of Amiet’s trailing-edge noise model. Part 1: theory. J. Sound Vib. 286(3), 477–506 (2005).
  28. 28.
    Schröder, A., Herr, M., Lauke, T., Dierksheide, U.: A study on trailing edge noise sources using high speed particle image velocimetry. In: Rath, H.J., Holze, C., Heinemann, H.J., Henke, R., Hönlinger, H. (eds.) New Results in Numerical and Experimental Fluid Mechanics V, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol. 92, pp. 373–380. Springer, Berlin (2006). DOI 10.1007/978-3-540-33287-9_46. URL
  29. 29.
    Siddon, T.: Noise source diagnostics using causality correlations. AGARD CP 131 on Noise Mechanism (7) (1974)Google Scholar
  30. 30.
    van der Waerden Bartel L: Mathematische Statistik, 3rd edn. Springer (1971)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations