• Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans


The chapter begins with a motivation of microfluidic flow analysis and summarizes the main diagnostic tools commonly used for flow measurements in microscopic systems. Thereafter, the typical implementation of 2D planar micro-PIV is presented, followed by a short historical background of significant development steps since 1993. Next, the imaging of volume-illuminated small particles is discussed and the essentials of three-dimensional diffraction pattern are outlined. The concept of depth-of-field and depth-of-correlation are introduced and the problem of particle visibility is discussed in detail. The second half of the chapter focuses on 3D micro-PIV and micro-PTV techniques. First, scanning, stereoscopic and tomographic micro-PIV recording techniques are presented. Thereafter, the confocal scanning microscopy and defocusing techniques are discussed. Finally, the 3D astigmatism PTV technique is outlined in detail and the strength of the technique for 3D time resolved flow analysis in micro-scale systems is demonstrated.


  1. 1.
    Adrian, R.J.: Dynamic ranges of velocity and spatial resolution of particle image velocimetry. Meas. Sci. Tech. 8(12), 1393–1398 (1997). DOI 10.1088/0957-0233/8/12/003. URL
  2. 2.
    Adrian, R.J., Yao, C.S.: Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials. Appl. Opt. 24(1), 44–52 (1985). DOI 10.1364/AO.24.000044. URL
  3. 3.
    Angarita-Jaimes, N., McGhee, E., Chennaoui, M., Campbell, H.I., Zhang, S., Towers, C.E., Greenaway, A.H., Towers, D.P.: Wavefront sensing for single view three-component three-dimensional flow velocimetry. Exp. Fluids 41, 881–891 (2006). DOI 10.1007/s00348-009-0737-z. URL
  4. 4.
    Angele, K.P., Suzuki, Y., Miwa, J., Kasagi, N.: Development of a high-speed scanning micro PIV system using a rotating disc. Meas. Sci. Tech. 17, 1639–1646 (2006). DOI 10.1088/0957-0233/17/7/001. URL
  5. 5.
    Baczyzmalski, D., Weier, T., Kähler, C.J., Cierpka, C.: Near-wall measurements of the bubble- and Lorentz-force-driven convection at gas-evolving electrodes. Exp. Fluids 56(8), 162 (2015). DOI 10.1007/s00348-015-2029-0. URL
  6. 6.
    Barnkob, R., Kähler, C.J., Rossi, M.: General defocusing particle tracking. Lab Chip 15, 3556–3560 (2015). DOI 10.1039/C5LC00562K. URL
  7. 7.
  8. 8.
    Bourdon, C.J., Olsen, M.G., Gorby, A.D.: Validation of an analytical solution for depth of correlation in microscopic particle image velocimetry. Meas. Sci. Tech. 15(2), 318–327 (2004). DOI 10.1088/0957-0233/15/2/002. URL
  9. 9.
    Bown, M.R., MacInnes, J.M., Allen, R.W.K.: Micro-PIV measurments and simulation in complex microchannel geometries. Meas. Sci. Tech. 16(3), 619–626 (2005). DOI 10.1088/0957-233/16/3/002. URL
  10. 10.
    Brücker, C.: Digital-particle-image-velocimetry (DPIV) in a scanning light-sheet: 3-D starting flow around a short cylinder. Exp. Fluids 19, 255–263 (1995). DOI 10.1007/BF00196474. URL
  11. 11.
    Brücker, C.: 3d scanning PIV applied to an air flow in a motored engine using digital high-speed video. Meas. Sci. Tech. 8(12), 1480 (1997). DOI 10.1088/0957-0233/8/12/011. URL
  12. 12.
    Bruus, H., Dual, J., Hawkes, J., Hill, M., Laurell, T., Nilsson, J., Radel, S., Sadhal, S., Wiklund, M.: Forthcoming lab on a chip tutorial series on acoustofluidics: Acoustofluidics-exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab Chip 11, 3579–3580 (2011). DOI 10.1039/C1LC90058G. URL
  13. 13.
    Chen, S., Angarita-Jaimes, N., Angarita-Jaimes, D., Pelc, B., Greenaway, A.H., Towers, C.E., Lin, D., Towers, P.D.: Wavefront sensing for three-component three-dimensional flow velocimetry in microfluidics. Exp. Fluids 47, 849–863 (2009). DOI 10.1007/s00348-009-0737-z. URL
  14. 14.
    Chen, Z., Milner, T.E., Dave, D., Nelson, J.S.: Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt. Lett. 22(1), 64–66 (1997). DOI 10.1364/OL.22.000064. URL
  15. 15.
    Chuang, H.S., Gui, L., Wereley, S.T.: Study of single pixel evaluation for experimental measurements in a microchannel. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, pp. IMECE2006–14,517. Chicago, IL (2006)Google Scholar
  16. 16.
    Chuang, H.S., Gui, L., Wereley, S.T.: Nano-resolution flow measurement based on single pixel evaluation PIV. Microfluid. Nanofluid. 13(1) (2012). DOI 10.1007/s10404-012-0939-1Google Scholar
  17. 17.
    Chuang, H.S., Kumar, K., Wereley, S.T.: Optical flow characterization microparticle image velocimetry \(\mu \)PIV. In: J.D. Zahn (ed.) Methods in bioengineering: biomicrofabrication and biomicrofluidics, chap. 12. Artech House (2009)Google Scholar
  18. 18.
    Cierpka, C., Kähler, C.J.: Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics. J. Vis. 15(1), 1–31 (2012). DOI 10.1007/s12650-011-0107-9. URL
  19. 19.
    Cierpka, C., Lütke, B., Kähler, C.J.: Higher order multi-frame particle tracking velocimetry. Exp. Fluids 54(5), 1533 (2013). DOI 10.1007/s00348-013-1533-3. URL
  20. 20.
    Cierpka, C., Rossi, M., Segura, R., Kähler, C.J.: On the calibration of astigmatism particle tracking velocimetry for microflows. Meas. Sci. Tech. 22(1), 015,401 (2011). DOI 10.1088/0957-0233/22/1/015401. URL
  21. 21.
    Cierpka, C., Rossi, M., Segura, R., Mastrangelo, F., Kähler, C.J.: A comparative analysis of the uncertainty of astigmatism-\(\mu \)PTV, stereo-\(\mu \)PIV, and \(\mu \)PIV. Exp. Fluids 52(3), 605–615 (2012). DOI 10.1007/s00348-011-1075-5. URL
  22. 22.
    Cierpka, C., Segura, R., Hain, R., Kähler, C.J.: A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics. Meas. Sci. Tech. 21(4), 045,401 (2010). DOI 10.1088/0957-0233/21/4/045401. URL
  23. 23.
    Dahm, W.J.A., Su, L.K., Southerland, K.B.: A scalar imaging velocimetry technique for fully resolved four-dimensional vector velocity field measurements in turbulent flows. Phys. Fluids A 4(10), 2191–2206 (1992). DOI 10.1063/1.858461. URL
  24. 24.
    Dalgarno, P.A., Dalgarno, H.I., Putoud, A., Lambert, R., Paterson, L., Logan, D.C., Towers, D.P., Warburton, R.J., Greenaway, A.H.: Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy. Opt. Express 18, 877–884 (2010). DOI 10.1364/OE.18.000877. URL
  25. 25.
    Elsinga, G.E., Scarano, F., Wieneke, B., van Oudheusden, B.W.: Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006). DOI 10.1007/s00348-006-0212-z. URL
  26. 26.
    Elsinga, G.E., Westerweel, J., Scarano, F., Novara, M.: On the velocity of ghost particles and the bias errors in tomographic-PIV. Exp. Fluids 50(4), 825–838 (2011). DOI 10.1007/s00348-010-0930-0. URL
  27. 27.
    Gösch, M., Blom, H., Holm, J., Heino, T., Rigler, R.: Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy. Anal. Chem. 72(14), 3260–3265 (2000). DOI 10.1021/ac991448p. URL
  28. 28.
    Gothsch, T., Schilcher, C., Richter, C., Beinert, S., Dietzel, A., Büttgenbach, S., Kwade, A.: High-pressure microfluidic systems (HPMS): flow and cavitation measurements in supported silicon microsystems. Microfluid. Nanofluid. 18(1), 121–130 (2015). DOI 10.1007/s10404-014-1419-6. URL
  29. 29.
    Grothe, R.L., Dabiri, D.: An improved three-dimensional characterization of defocusing digital particle image velocimetry (DDPIV) based on a new imaging volume definition. Meas. Sci. Tech. 19(6), 065,402 (2008). DOI 10.1088/0957-0233/19/6/065402. URL
  30. 30.
    Guerrero, J.A., Mendoza-Santoyo, F., Moreno, D., Funes-Gallanzi, M., Fernandez-Orozco, S.: Particle positioning from CCD images: experiments and comparison with the generalized Lorenz-Mie theory. Meas. Sci. Tech. 11(5), 568–575 (2000). DOI 10.1088/0957-0233/11/5/318. URL
  31. 31.
    Guerrero-Viramontes, J.A., Moreno-Hernández, D., Mendoza-Santoyo, F., Funes-Gallanzi, M.: 3D particle positioning from CCD images using the generalized Lorenz-Mie and Huygens-Fresnel theory. Meas. Sci. Tech. 17(8), 2328–2334 (2006). DOI 10.1088/0957-0233/17/8/039. URL
  32. 32.
    Hagsäter, S.M., Westergaard, C.H., Bruus, H., Kutter, J.P.: Investigations on LED illumination for micro-PIV including a novel front-lit configuration. Exp. Fluids 44(2), 211–219 (2008). DOI 10.1007/s00348-007-0394-z. URL
  33. 33.
    Hain, R., Kähler, C.J.: Single camera volumetric velocity measurements using optical aberrations. In: 12th International Symposium on Flow Visualization. Göttingen, Germany (2006)Google Scholar
  34. 34.
    Hain, R., Kähler, C.J.: Fundamentals of multiframe particle image velocimetry (PIV). Exp. Fluids 42(4), 575–587 (2007). DOI 10.1007/s00348-007-0266-6. URL
  35. 35.
    Hain, R., Kähler, C.J., Radespiel, R.: Principles of a volumetric velocity measurement technique based on optical aberrations In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 106, pp. 1–10. Springer, Berlin (2009). DOI 10.1007/978-3-642-01106-1_1. URL
  36. 36.
    van Hinsberg, N.P., Roisman, I.V., Tropea, C.: Three-dimensional, three-component particle imaging using two optical aberrations and a single camera. In: 14th Internatioanl Symposium on Applications of Laser Techniques to Fluid Mechanics. Lisbon, Portugal (2008). URL
  37. 37.
    Hiraoka, Y., Sedat, J.W., Agard, D.A.: Determination of three-dimensional imaging properties of a light microscope system. Partial confocal behavior in epifluorescence microscopy. Biophys. J. 57, 325–333 (1990). DOI 10.1016/S0006-3495(90)82534-0. URL
  38. 38.
    Holtzer, L., Meckel, T., Schmidt, T.: Nanometric three-dimensional tracking of individual quantum dots in cells. Appl. Phys. Lett. 90(5), 053,902 (2007). DOI 10.1063/1.2437066. URL
  39. 39.
    Hsu, W.Y., Lee, C.S., Chen, P.J., Chen, N.T., Chen, F.Z., Yu, Z.R., Kuo, C.H., Hwang, C.H.: Development of the fast astigmatism auto-focus microscope system. Meas. Sci. Tech. 20(4), 045,902 (2009). DOI 10.1088/0957-0233/20/4/045902. URL
  40. 40.
    Huang, B., Wang, W., Bates, M., Zhuang, X.: Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008). DOI 10.1126/science.1153529. URL
  41. 41.
    Inoué, S., Spring, K.R.: Video Microscopy: The Fundamentals, 2nd edn. Language of Science. Springer, New York (1997)Google Scholar
  42. 42.
    Ismagilov, R.F., Stroock, A.D., Kenis, P.J.A., Whitesides, G., Stone, H.A.: Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl. Phys. Lett. 76(17), 2376–2378 (2000). DOI 10.1063/1.126351. URL
  43. 43.
    Kähler, C.J.: Visualization of 3D velocity and temperature fields with micron resolution. In: 16th International Symposium on Flow Visualization, Okinawa (Japan) (2014). URL
  44. 44.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the resolution limit of digital particle image velocimetry. Exp. Fluids 52(6), 1629–1639 (2012). DOI 10.1007/s00348-012-1280-x. URL
  45. 45.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52(6), 1641–1656 (2012). DOI 10.1007/s00348-012-1307-3. URL
  46. 46.
    Kähler, C.J., Scholz, U., Ortmanns, J.: Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp. Fluids 41(2), 327–341 (2006). DOI 10.1007/s00348-006-0167-0. URL
  47. 47.
    Kajitani, L., Dabiri, D.: A full three-dimensional characterization of defocusing digital particle image velocimetry. Meas. Sci. Tech. 16(3), 790–804 (2005). DOI 10.1088/0957-0233/16/3/022. URL
  48. 48.
    Kajitani, L., Dabiri, D.: A full three-dimensional characterization of defocusing digital particle image velocimetry. Meas. Sci. Tech. 19(4), 049,801 (2008). DOI 10.1088/0957-0233/19/4/049801. URL
  49. 49.
    Kao, H.P., Verkman, A.S.: Tracking of single fluorescent particles in three dimensions: Use of cylindrical optics to encode particle postition. Biophys. J. 67, 1291–1300 (1994). DOI 10.1016/S0006-3495(94)80601-0. URL
  50. 50.
    Kelemen, K., Crowther, F.E., Cierpka, C., Hecht, L.L., Kähler, C.J., Schuchmann, H.P.: Investigations on the characterization of laminar and transitional flow conditions after high pressure homogenization orifices. Microfluid. Nanofluid. 18(4), 599–612 (2015). DOI 10.1007/s10404-014-1457-0. URL
  51. 51.
    Kiebert, F., Wege, S., Massing, J., Konig, J., Cierpka, C., Weser, R., Schmidt, H.: 3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison. Lab Chip (2017). DOI 10.1039/C7LC00184C. URL
  52. 52.
    Kim, H., Große, S., Elsinga, G., Westerweel, J.: Full 3D–3C velocity measurement inside a liquid immersion droplet. Exp. Fluids 51(2), 395–405 (2011). DOI 10.1007/s00348-011-1053-y. URL
  53. 53.
    Kinoshita, H., Kaneda, S., Fujii, T., Oshima, M.: Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab Chip 7, 338–346 (2007). DOI 10.1039/B617391H. URL
  54. 54.
    Klein, S.A., Posner, J.D.: Improvement in two-frame correlations by confocal microscopy for temporally resolved micro particle imaging velocimetry. Meas. Sci. Tech. 21(10), 105,409 (2010). DOI 10.1088/0957-0233/21/10/105409. URL
  55. 55.
    Kloosterman, A., Poelma, C., Westerweel, J.: Flow rate estimation in large depth-of-field micro-PIV. Exp. Fluids 50(6), 1587–1599 (2010). DOI 10.1007/s00348-010-1015-9. URL
  56. 56.
    Koochesfahani, M.M., Cohn, R.K., Gendrich, C.P., Nocera, D.G.: Molecular tagging diagnostics for the study of kinematics and mixing in liquid-phase flows. In: Adrian, R.J., Durao, D., Durst, F., Heitor, M., Maeda, M., Whitelaw, J.H.(eds.) Developments in Laser Techniques in Fluid Mechanics, pp. 125–134. Springer Verlag, New York (1997). URL
  57. 57.
    Koutsiaris, A.G., Mathioulakis, D.S., Tsangaris, S.: Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries. Meas. Sci. Tech. 10(11), 1037 (1999). DOI 10.1088/0957-0233/10/11/311. URL
  58. 58.
    Kumar, A., Cierpka, C., Williams, S.J., Kähler, C.J., Wereley, S.T.: 3D3C velocimetry measurements of an electrothermal microvortex using wavefront deformation PTV and a single camera. Micro Nano 10, 355–365 (2011). DOI 10.1007/s10404-010-0674-4. URL
  59. 59.
    Lanzillotto, A.M., et al.: Applications of X-ray micro-imaging, visualization and motion analysis techniques to fluidic microsystems. In: Technical Digest of the IEEE 8th International Conference on Solid State Sensor and Actuator Workshop, 3–6 June, Hilton Head Island, SC, pp. 123–126 (1995)Google Scholar
  60. 60.
    Laurell, T., Petersson, F., Nilsson, A.: Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 36, 492–506 (2007). DOI 10.1039/B601326K. URL
  61. 61.
    Lawson, N.J., Wu, J.: Three-dimensional particle image velocimetry: experimental error analysis of a digital angular stereoscopic system. Meas. Sci. Tech. 8(12), 1455 (1997). DOI 10.1088/0957-0233/8/12/009. URL
  62. 62.
    Lee, S.J., Kim, S.: Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry. Exp. Fluids 46, 255–264 (2009). DOI 10.1007/s00348-008-0555-8. URL
  63. 63.
    Leu, T.S., Lanzillotto, A.M., Amabile, M., Wildes, R.: Analysis of fluidic and mechanical motion in MEMS by using high speed X-ray micro-imaging techniques. In: Solid State Sensors and Actuators. TRANSDUCERS ’97 Chicago., 1997 International Conference on, vol. 1, pp. 149–150 (1997). DOI 10.1109/SENSOR.1997.613604. URL
  64. 64.
    Li, D.: Encyclopedia of Microfluidics and Nanofluidics, 2nd edn. Encyclopedia of Microfluid. Nanofluidics. Springer, New York (2015). URL
  65. 65.
    Lima, R., Wada, S., Takeda, M., Tsubota, K., Yamaguchi, T.: In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles. J Biomech. 40, 2752–2757 (2007). DOI 10.1016/j.biomech.2007.01.012. URL
  66. 66.
    Lima, R., Wada, S., Tsubota, K., Yamaguchi, T.: Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel. Meas. Sci. Tech. 17(4), 797–808 (2006). DOI 10.1088/0957-0233/17/4/026. URL
  67. 67.
    Lin, D., Angarita-Jaimes, N.C., Chen, S., Greenaway, A.H., Towers, C.E., Towers, D.P.: Three-dimensional particle imaging by defocusing method with an annular aperture. Opt. Lett. 33(9), 905–907 (2008). DOI 10.1364/OL.33.000905. URL
  68. 68.
    Lindken, R., Westerweel, J., Wieneke, B.: Stereoscopic micro particle image velocimetry. Exp. Fluids 41(2), 161–171 (2006). DOI 10.1007/s00348-006-0154-5. URL
  69. 69.
    Lu, J., Pereira, F., Fraser, S.E., Gharib, M.: Three-dimensional real-time imaging of cardiac cell motions in living embryos. J. Biomed. Opt. 13, 014006 (2008). DOI 10.1117/1.2830824. URL
  70. 70.
    Marin, A., Liepelt, R., Rossi, M., Kähler, C.J.: Surfactant-driven flow transitions in evaporating droplets. Soft Matter 12, 1593–1600 (2016). DOI 10.1039/C5SM02354H. URL
  71. 71.
    Marin, A., Rossi, M., Rallabandi, B., Wang, C., Hilgenfeldt, S., Kähler, C.J.: Three-dimensional phenomena in microbubble acoustic streaming. Phys. Rev. Appl. 3, 041,001 (2015). DOI 10.1103/PhysRevApplied.3.041001. URL
  72. 72.
    Massing, J., Kaden, D., Kähler, C.J., Cierpka, C.: Luminescent two-color tracer particles for simultaneous velocity and temperature measurements in microfluidics. Meas. Sci. Tech. 27(11), 12 (2016). DOI 10.1088/0957-0233/27/11/115301. URL
  73. 73.
    Meinhart, C.D., Wereley, S.T.: The theory of diffraction-limited resolution in microparticle image velocimetry. Meas. Sci. Tech. 14(7), 1047 (2003). DOI 10.1088/0957-0233/14/7/320. URL
  74. 74.
    Meinhart, C.D., Wereley, S.T., Gray, M.H.B.: Volume illumination for two-dimensional particle image velocimetry. Meas. Sci. Tech. 11(6), 809 (2000). DOI 10.1088/0957-0233/11/6/326. URL
  75. 75.
    Meinhart, C.D., Wereley, S.T., Santiago, J.G.: PIV measurements of a microchannel flow. Exp. Fluids 27(5), 414–419 (1999). DOI 10.1007/s003480050366. URL
  76. 76.
    Meinhart, C.D., Wereley, S.T., Santiago, J.G.: Micron-resolution velocimetry techniques. In: Adrian, R., Durão, D., Durst, F., Heitor, M., Maeda, M., Whitelaw, J.(eds.) Laser Techniques Applied to Fluid Mechanics, pp. 57–70. Springer, Berlin (2000). DOI 10.1007/978-3-642-56963-0_4. URL
  77. 77.
    Meinhart, C.D., Zhang, H.: The flow structure inside a microfabricated inkjet printer head. J. Microelectromech. Syst. 9(1), 67–75 (2000). DOI 10.1109/84.825779. URL
  78. 78.
    Min, Y.U., Kim, K.C.: Hybrid micro-/nano-particle image velocimetry for 3D3C multi-scale velocity field measurement in microfluidics. Meas. Sci. Tech. 22, 064,001 (2011). DOI 10.1088/0957-0233/22/6/064001. URL
  79. 79.
    Minsky, M.: Microscopy apparatus (1961). US Patent 3,013,467Google Scholar
  80. 80.
    Minsky, M.: Memoir on inventing the confocal scanning microscope. Scanning 10(4), 128–138 (1988). DOI 10.1002/sca.4950100403. URL
  81. 81.
    Mlodzianoski, M.J., Juette, M.F., Beane, G.L., Bewersdorf, J.: Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy. Opt. Express 17, 8264–8277 (2009). DOI 10.1364/OE.17.008264. URL
  82. 82.
    Moreno-Hernandez, D., Bueno-ía, J.A., Guerrero-Viramontes, J.A., Mendoza-Santoyo, F.: 3D particle positioning by using the Fraunhofer criterion. Opt. Lasers Eng. 49(6), 729–735 (2011). DOI 10.1016/j.optlaseng.2011.01.019. URL
  83. 83.
    Muller, P.B., Rossi, M., Marín, A.G., Barnkob, R., Augustsson, P., Laurell, T., Kähler, C.J., Bruus, H.: Ultrasound-induced acoustophoretic motion of microparticles in three dimensions. Phys. Rev. E 88, 023,006 (2013). DOI 10.1103/PhysRevE.88.023006. URL
  84. 84.
    Murata, S., Kawamura, M.: Particle depth measurement based on depth-from-defocus. Opt. Laser Tech. 31, 95–102 (1999). DOI 10.1016/S0030-3992(99)00027-4. URL
  85. 85.
    Nasarek, R.: Temperature field measurements with high spatial and temporal resolution using liquid crystal thermography and laser induced fluorescence. Ph.D. thesis, Technische Universität Darmstadt, Germany (2010)Google Scholar
  86. 86.
    Nguyen, N.T., Wereley, S.T.: Fundamentals and Applications of Microfluidics. Artech House integrated microsystems series. Artech House (2006). URL
  87. 87.
    Olsen, M.G., Adrian, R.J.: Brownian motion and correlation in particle image velocimetry. Opt. Laser Tech. 32(7–8), 621–627 (2000). DOI 10.1016/S0030-3992(00)00119-5. URL Optical methods in heat and fluid flow
  88. 88.
    Olsen, M.G., Adrian, R.J.: Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Exp. Fluids 29(1), S166–S174 (2000). DOI 10.1007/s003480070018. URL
  89. 89.
    Ovryn, B., Hovenac, E.A.: Coherent forward scattering particle-image velocimetry: application of Poisson’s spot for velocity measurements in fluids. In: Optical Diagnostics in Fluid and Thermal Flow, pp. 338–348. San Diego, CA, USA (1993). DOI 10.1117/12.163718. URL
  90. 90.
    Padilla Sosa, P., Moreno, D., Guerrero, J.A., Funes-Gallanzi, M.: Low-magnification particle positioning for 3D velocimetry applications. Opt. Laser Tech. 34(1), 59–68 (2002). DOI 10.1016/S0030-3992(01)00096-2. URL
  91. 91.
    Park, J.S., Choi, C.K., Kihm, K.: Optically sliced micro-PIV using confocal laser scanning microscopy CLSM. Exp. Fluids 37, 105–119 (2004). DOI 10.1007/s00348-004-0790-6. URL
  92. 92.
    Pereira, F., Gharib, M.: Defocusing digital particle image velocimetry and three-dimensional characterization of two phase flows. Meas. Sci. Tech. 13(5), 683–694 (2002). DOI 10.1088/0957-0233/13/5/305. URL
  93. 93.
    Pereira, F., Gharib, M., Dabiri, D., Modarress, D.: Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows. Exp. Fluids 29(1), S78–S84 (2000). DOI 10.1007/s003480070010. URL
  94. 94.
    Pereira, F., Lu, J., Castaño Graff, E., Gharib, M.: Microscale 3D flow mapping with \(\mu \)DDPIV. Exp. Fluids 42, 589–599 (2007). DOI 10.1007/s00348-007-0267-5. URL
  95. 95.
    Puccetti, G., Rossi, M., Morini, G.L., Kähler, C.J.: Sensitivity to shear stress of non-encapsulated thermochromic liquid crystal (TLC) particles for microfluidic applications. Microfluid. Nanofluid. 20(1), 19 (2016). DOI 10.1007/s10404-015-1694-x. URL
  96. 96.
    Raffel, M., Westerweel, J., Willert, C.E., Gharib, M., Kompenhans, J.: Analytical and experimental investigations of dual-plane particle image velocimetry. Opt. Eng. 35(7), 2067–2074 (1996). DOI 10.1117/1.600695. URL
  97. 97.
    Ragan, T., Huang, H., So, P., Gratton, E.: 3D particle tracking on a two-photon microscope. J. Fluoresc. 16(3), 325–336 (2006). DOI 10.1007/s10895-005-0040-1. URL
  98. 98.
    Rallabandi, B., Marin, A., Rossi, M., Kähler, C.J., Hilgenfeldt, S.: Three-dimensional streaming flow in confined geometries. J. Fluid Mech. 777, 408–429 (2015). DOI 10.1017/jfm.2015.336. URL
  99. 99.
    Rohály, J., Lammerding, J., Frigerio, F., Hart, D.P.: Monocular 3-D active \(\mu \)-PTV. In: 4th International Symposium on PIV. Göttingen, Germany (2001)Google Scholar
  100. 100.
    Rossi, M., Kähler, C.J.: Optimization of astigmatic particle tracking velocimeters. Exp. Fluids 55(9), 1809 (2014). DOI 10.1007/s00348-014-1809-2. URL
  101. 101.
    Rossi, M., Lindken, R., Hierck, B.P., Westerweel, J.: Tapered microfluidic chip for the study of biochemical and mechanical response of endothelial cells to shear flow at subcellular level. Lab Chip 9, 1403–1411 (2009). DOI 10.1039/B822270N. URL
  102. 102.
    Rossi, M., Lindken, R., Westerweel, J.: Optimization of multiplane \(\mu \)PIV for wall shear stress and wall topography characterization. Exp. Fluids 48, 211–223 (2010). DOI 10.1007/s00348-009-0725-3. URL
  103. 103.
    Rossi, M., Segura, R., Cierpka, C., Kähler, C.J.: On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV. Exp. Fluids 52(4), 1063–1075 (2012). DOI 10.1007/s00348-011-1194-z. URL
  104. 104.
    Sadr, R., Anoop, K., Khader, R.: Effects of surface forces and non-uniform out-of-plane illumination on the accuracy of nPIV velocimetry. Meas. Sci. Tech. 23(5), 055,303 (2012). DOI 10.1088/0957-0233/23/5/055303. URL
  105. 105.
    Santiago, J.G., Wereley, S.T., Meinhart, C.D., Beebe, D.J., Adrian, R.J.: A particle image velocimetry system for microfluidics. Exp. Fluids 25(4), 316–319 (1998). DOI 10.1007/s003480050235. URL
  106. 106.
    Segura, R., Cierpka, C., Rossi, M., Joseph, S., Bunjes, H., Kähler, C.J.: Non-encapsulated thermo-liquid crystals for digital particle tracking thermography/velocimetry in microfluidics. Microfluid. Nanofluid. 14(3), 445–456 (2013). DOI 10.1007/s10404-012-1063-y. URL
  107. 107.
    Segura, R., Cierpka, C., Rossi, M., Kähler, C.J.: Thermochromic liquid crystals for particle image thermometry. In: Li, D (ed.) Encycl. Microfluid. Nanofluid. pp. 1–10. Springer US, Boston, MA (2013). DOI 10.1007/978-3-642-27758-0_1183-6. URL
  108. 108.
    Segura, R., Rossi, M., Cierpka, C., Kähler, C.J.: Simultaneous three-dimensional temperature and velocity field measurements using astigmatic imaging of non-encapsulated thermo-liquid crystal (TLC) particles. Lab Chip 15, 660–663 (2015). DOI 10.1039/C4LC01268B. URL
  109. 109.
    Shinohara, K., Sugii, Y., Jeong, J.H., Okamoto, K.: Development of a three-dimensional scanning microparticle image velocimetry system using a piezo actuator. Rev. Sci. Instrum. 76, 106109 (2005). DOI 10.1063/1.2114889. URL
  110. 110.
    Snoeyink, C., Wereley, S.: Single-image far-field subdiffraction limit imaging with axicon. Opt. Lett. 38(5), 625–627 (2013). DOI 10.1364/OL.38.000625. URL
  111. 111.
    Squires, T.M., Quake, S.R.: Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005). DOI 10.1103/RevModPhys. 77.977. URL
  112. 112.
    Stolz, W., Köhler, J.: In-plane determination of 3D-velocity vectors using particle tracking anemometry (PTA). Exp. Fluids 17(1), 105–109 (1994). DOI 10.1007/BF02412811. URL
  113. 113.
    Tien, W.H.: Development of multi-spectral three-dimensional micro particle tracking velocimetry. Meas. Sci. Tech. 27(8), 084,010 (2016). DOI 10.1088/0957-0233/27/8/084010. URL
  114. 114.
    Tien, W.H., Hove, Dabiri Danacand, J.R., : Color-coded three-dimensional micro particle tracking velocimetry and application to micro backward-facing step flows. Exp. Fluids 55(3), 1684 (2014). DOI 10.1007/s00348-014-1684-x. URL
  115. 115.
    Tien, W.H., Kartes, P., Yamasaki, T., Dabiri, D.: A color-coded backligthed defocusing digital particle image velocimetry system. Exp. Fluids 44(6), 1015–1026 (2008). DOI 10.1007/s00348-007-0457-1. URL
  116. 116.
    Towers, C.E., Towers, D.P., Campbell, H.I., Zhang, S., Greenaway, A.H.: Three-dimensional particle imaging by wavefront sensing. Opt. Lett. 31(9), 1220–1222 (2006). DOI 10.1364/OL.31.001220. URL
  117. 117.
    Volk, A., Rossi, M., Kähler, C.J., Hilgenfeldt, S., Marin, A.: Growth control of sessile microbubbles in PDMS devices. Lab Chip 15, 4607–4613 (2015). DOI 10.1039/C5LC00982K. URL
  118. 118.
    Wereley, S.T., Meinhart, C.D.: Micron-resolution particle image velocimetry. In: Breuer, K.S. (ed.) Microscale Diagnostic Techniques, pp. 51–112. Springer, Berlin (2005). DOI 10.1007/3-540-26449-3_2. URL
  119. 119.
    Wereley, S.T., Meinhart, C.D.: Recent advances in micro-particle image velocimetry. Ann. Revi. Fluid Mech. 42 (2010). doi:10.1146/annurev-fluid-121108-145427. URL
  120. 120.
    Westerweel, J., Geelhoed, P., Lindken, R.: Single-pixel resolution ensemble correlation for micro-PIV applications. Exp. Fluids 37(3), 375–384 (2004). DOI 10.1007/s00348-004-0826-y. URL
  121. 121.
    Willert, C.E., Gharib, M.: Three-dimensional particle imaging with a single camera. Exp. Fluids 12(6), 353–358 (1992). DOI 10.1007/BF00193880. URL
  122. 122.
    Williams, S.J., Park, C., Wereley, S.T.: Advances and applications on microfluidic velocimetry techniques. Micro Nano 8, 709–726 (2010). DOI 10.1007/s10404-010-0588-1. URL
  123. 123.
    Yoon, S.Y., Khim, K.D., Kim, K.C.: Correlation of fluid refractive index with calibration coefficient for micro-defocusing digital particle image velocimetry. Meas. Sci. Tech. 22(3), 037,001 (2011). DOI 10.1088/0957-0233/22/3/037001. URL
  124. 124.
    Yoon, S.Y., Kim, K.C.: 3D particle and 3D velocity field measurement in a microvolume via the defocusing concept. Meas. Sci. Tech. 17(11), 2897–2905 (2006). DOI 10.1088/0957-0233/17/11/006. URL
  125. 125.
    Yoshida, H.: The wide variety of possible applications of micro-thermofluid control. Microfluid. Nanofluid. 1, 289–300 (2005). DOI 10.1007/s10404-004-0014-7. URL
  126. 126.
    Yu, C.H., Yoon, J.H., Kim, H.B.: Development and validation of stereoscopic micro-PTV using match probability. J. Mech. Sci. Tech. 23(3), 845–855 (2009). DOI 10.1007/s12206-008-1209-8. URL
  127. 127.
    Zettner, C.M., Yoda, M.: Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Exp. Fluids 34(1), 115–121 (2003). DOI 10.1007/s00348-002-0541-5. URL

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations