Advertisement

Introduction

  • Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans
Chapter

Abstract

The introduction starts with a short summary of the historical background of PIV. Next, the fundamental principles of PIV are briefly explained in an easily understandable manner, so that the reader already becomes aware of the main advantages, problems and limitations of PIV, before starting to read the detailed explanations in the main part of the book. Several major technological milestones of PIV, achieved during the last decades, resulted in its wide-spread use within different areas today. This fact is illustrated taking examples from applications for fundamental research in turbulent flows and for industrial research in large test facilities.

References

  1. 1.
    Adrian, R.J.: Multi-point optical measurements of simultaneous vectors in unsteady flow - a review. Int. J. Heat Fluid Flow 7(2), 127–145 (1986). DOI 10.1016/0142-727X(86)90062-7. URL https://dx.doi.org/10.1016/0142-727X(86)90062-7
  2. 2.
    Adrian, R.J.: Particle-imaging techniques for experimental fluid mechanics. Ann. Rev. Fluid Mech. 23(1), 261–304 (1991). DOI 10.1146/annurev.fl.23.010191.001401. URL https://dx.doi.org/10.1146/annurev.fl.23.010191.001401
  3. 3.
    Adrian, R.J.: Bibliography of particle image velocimetry using imaging methods: 1917 – 1995. Technical report, Arizona State University, Tempe (Az) (2011). Reprint: DLR-Mitteilung 2011-01Google Scholar
  4. 4.
    Adrian, R.J., Westerweel, J.: Particle Image Velocimetry. Cambridge Aerospace Series. Cambridge University Press, Cambridge (2011). URL http://www.cambridge.org/de/academic/subjects/engineering/thermal-fluids-engineering/particle-image-velocimetry
  5. 5.
    Ahlborn, F.: Über den Mechanismus des hydrodynamischen Widerstandes, Abhandlungen aus dem Gebiete der Naturwissenschaften, vol. 17. L. Friederichsen & Co, Hamburg (1902)Google Scholar
  6. 6.
    Ahlborn, F.: Über den Mechanismus des Widerstandes flüssiger Medien. Physikalische Zeitschrift 3(6), 120–124 (1902)Google Scholar
  7. 7.
    Ahlborn, F.: Die Ablösungtheorie der Grenzschichten und die Wirbelbildung. Jahrbuch der wissenschaftlichen Gesellschaft für Luftfahrt e.V. (WGL) pp. 171–177 (1927)Google Scholar
  8. 8.
    Barker, D.B., Fourney, M.E.: Measuring fluid velocities with speckle patterns. Opt. Lett. 1(4), 135–137 (1977). DOI 10.1364/OL.1.000135. URL https://dx.doi.org/10.1364/OL.1.000135
  9. 9.
    Brücker, C.: 3-D PIV via spatial correlation in a color-coded light-sheet. Exper. Fluids 21(4), 312–314 (1996). DOI 10.1007/BF00190682. URL https://dx.doi.org/10.1007/BF00190682
  10. 10.
    Brücker, C.: Spatial correlation analysis for 3-D scanning PIV: simulation and application of dual-color light-sheet scanning. In: 8th International Symposium on the Applications of Laser Techniques to Fluid Mechanics, Lisbon (Portugal) (1996)Google Scholar
  11. 11.
    Buchlin, J.M. (ed.): Digital Image Processing in Fluid Dynamics. von Karman Institute for Fluid Dynamics Lecture Series, VKI LS 1984-03. Von Karman Institute, Rhode-Saint-Genèse, Belgium (1984). URL https://store.vki.ac.be/digital-image-processing-in-fluid-dynamics-200.html
  12. 12.
    Dudderar, T.D., Simpkins, P.G.: Laser speckle photography in a fluid medium. Nature 270, 45–47 (1977). DOI 10.1038/270045a0. URL https://dx.doi.org/10.1038/270045a0
  13. 13.
    Elliott, G.S., Beutner, T.J.: Molecular filter based planar Doppler velocimetry. Progr. Aerosp. Sci. 35(8), 799–845 (1999). DOI 10.1016/S0376-0421(99)00008-1. URL https://dx.doi.org/10.1016/S0376-0421(99)00008-1
  14. 14.
    Grant, I.: Selected Papers on Particle Image Velocimetry. SPIE Milestone Series, vol. MS99. SPIE Optical Engineering Press (1994). URL http://spie.org/Publications/Book/172964?&origin_id=x649&sort=PubDateASC&start_at=73
  15. 15.
    Grant, I.: Particle image velocimetry: a review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 211(1), 55–76 (1997). DOI 10.1243/0954406971521665. URL https://dx.doi.org/10.1243/0954406971521665
  16. 16.
    Grousson, R., Mallick, S.: Study of flow pattern in a fluid by scattered laser light. Appl. Opt. 16(9), 2334–2336 (1977). DOI 10.1364/AO.16.002334. URL https://dx.doi.org/10.1364/AO.16.002334
  17. 17.
    Hinsch, K.D.: Particle image velocimetry. In: Sirohi, R. (ed.) Speckle Metrology, pp. 235–324. Marcel Dekker, New York (1993)Google Scholar
  18. 18.
    Hinsch, K.D.: Three-dimensional particle velocimetry. Meas. Sci. Technol. 6(6), 742 (1995). DOI 10.1088/0957-0233/6/6/012. URL https://dx.doi.org/10.1088/0957-0233/6/6/012
  19. 19.
    Hinsch, K.D.: Holographic particle image velocimetry. Meas. Sci. Technol. 13(7), R61 (2002). DOI 10.1088/0957-0233/13/7/201. URL https://dx.doi.org/10.1088/0957-0233/13/7/201
  20. 20.
    Hinsch, K.D., Hinrichs, H.: Three-dimensional particle velocimetry. In: T. Dracos (ed.) Three-Dimensional Velocity and Vorticity Measuring and Image Analysis Techniques. ERCOFTAC Series, vol. 4, pp. 129–152. Springer, Netherlands (1996). DOI 10.1007/978-94-015-8727-3_6. URL https://dx.doi.org/10.1007/978-94-015-8727-3_6
  21. 21.
    Hinterwaldner, I.: Parallel lines as tools for making turbulence visible. Representations 124(1), 1–42 (2013). DOI 10.1525/rep.2013.124.1.1. URL https://dx.doi.org/10.1525/rep.2013.124.1.1
  22. 22.
    Hinterwaldner, I.: Model building with wind and water: Friedrich Ahlborn’s photo-optical flow analysis. Stud. Hist. Philos. Sci. Part A 49, 1–17 (2015). DOI 10.1016/j.shpsa.2014.10.003. URL https://dx.doi.org/10.1016/j.shpsa.2014.10.003
  23. 23.
    Hoffmann, C.: Superpositions: Ludwig Mach and Étienne-Jules Marey’s studies in streamline photography. Stud. Hist. Philos. Sci. Part A 44(1), 1–11 (2013). DOI 10.1016/j.shpsa.2012.08.002. URL https://dx.doi.org/10.1016/j.shpsa.2012.08.002
  24. 24.
    Kähler, C.J.: Ortsaufgelöste Geschwindigkeitsmessungen in einer turbulenten Grenzschicht. Technical report, DLR, Göttingen, Germany (1997). DLR-FB-1997-32Google Scholar
  25. 25.
    Kähler, C.J.: The significance of coherent flow structures for the turbulent mixing in wall-bounded flows. Ph.D. thesis, Georg-August-University zu Göttingen (Germany) (2004). http://hdl.handle.net/11858/00-1735-0000-0006-B4C8-8. DLR-FB-2004-24
  26. 26.
    Kähler, C.J., Astarita, T., Vlachos, P.P., Sakakibara, J., Hain, R., Discetti, S., La Foy, R., Cierpka, C.: Main results of the 4th international PIV challenge. Exper. Fluids 57(6), 97 (2016). DOI 10.1007/s00348-016-2173-1. URL http://dx.doi.org/10.1007/s00348-016-2173-1
  27. 27.
    Keane, R.D., Adrian, R.J.: Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49(3), 191–215 (1992). DOI 10.1007/BF00384623. URL https://dx.doi.org/10.1007/BF00384623
  28. 28.
    Kompenhans, J., Hoecker, R.: Investigation of turbulent flows by means of particle image velocimetry. In: Proceedings of the Fifth International Symposium on Flow Visualization, Prague, p. 6 (1989)Google Scholar
  29. 29.
    Kompenhans, J., Reichmuth, J.: Particle imaging velocimetry in a low turbulent wind tunnel and other flow facilities. In: AGARD Conference on Advanced Instrumentation for Aero Engine Components, 19–23 May, Philadelphia (USA), vol. 399, pp. 35 (1–13) (1986)Google Scholar
  30. 30.
    Koochesfahani, M.M., Cohn, R.K., Gendrich, C.P., Nocera, D.G.: Molecular tagging diagnostics for the study of kinematics and mixing in liquid-phase flows. In: R.J. Adrian, D. Durao, F. Durst, M. Heitor, M. Maeda, J.H. Whitelaw (eds.) Developments in Laser Techniques in Fluid Mechanics, pp. 125–134. Springer, New York (1997). URL http://www.egr.msu.edu/tmual/Papers_PDF/1996_MTV_Review-Springer-Chapter.pdf
  31. 31.
    Lauterborn, W., Vogel, A.: Modern optical techniques in fluid mechanics. Ann. Rev. Fluid Mech. 16(1), 223–244 (1984). DOI 10.1146/annurev.fl.16.010184.001255. URL https://dx.doi.org/10.1146/annurev.fl.16.010184.001255
  32. 32.
    Mach, L.: Über die Sichtbarmachung von Luftstromlinien. Zeitschrift für Luftschiffahrt und Physik der Atmosphäre 15(6), 129–139 (1896)Google Scholar
  33. 33.
    Marey, E.J.: Le mouvement des liquides étudié par la chronophotographie. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 117, 913–924 (1893)Google Scholar
  34. 34.
    Marey, E.J.: Les mouvement de l’air étudiés par la chronophotographie. La Nature 49, 252–254 (1901)Google Scholar
  35. 35.
    Meyers, J.F., Komine, H.: Doppler global velocimetry: a new way to look at velocity. In: ASME Fourth International Conference on Laser Anemometry (August 3–9, 1991), vol. 1, pp. 289–296 (1991). URL https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040161444.pdf
  36. 36.
    Meynart, R.: Mésure de champs de vitesse d’écoulements fluides par analyse de suites d’images obtenues par diffusion d’un feuillet lumineux. Ph.D. thesis, Faculté des Sciences Appliquées, Université Libre de Bruxelles (1983). URL https://www.vki.ac.be/index.php/departments/ea-department-other-menu-68/25-years-of-piv
  37. 37.
    Noguès, F.: Recherches expérimentales de Marey sur le mouvement dans l’air et dans l’eau. Publications scientifiques et techniques du Ministère de l’Air. Gauthier-Villars, Paris (1933)Google Scholar
  38. 38.
    Prandtl, L.: Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In: Verhandlungen des III. Internationalen Mathematiker-Kongresses, Heidelberg (1904), pp. 484–491. Teubner, Leipzig (1905). 10.1007/978-3-662-11836-8_43. URL https://dx.doi.org/10.1007/978-3-662-11836-8_43. Reprint
  39. 39.
    Prandtl, L.: Entstehung von Wirbeln bei Wasserströmungen I.. - Entstehung von Wirbeln und künstliche Beeinflussung der Wirbelbildung. Reichsstelle für den Unterrichtsfilm, Berlin, Germany (1927–1933). DOI 10.3203/IWF/C-1. URL https://doi.org/10.3203/IWF/C-1
  40. 40.
    Prandtl, L.: Entstehung von Wirbeln bei Wasserströmungen II.. - Anwendungen auf die Strömung durch Krümmer, Hohlräume und Verzweigungsstücke. Reichsstelle für den Unterrichtsfilm, Berlin, Germany (1932-1933). DOI 10.3203/IWF/C-2. URL https://doi.org/10.3203/IWF/C-2
  41. 41.
    Prandtl, L.: Entstehung von Wirbeln bei Wasserströmungen. IWF Wissen und Medien gGmbH, DVD, Göttingen, Germany (2009)Google Scholar
  42. 42.
    Raffel, M., Richard, H., Ehrenfried, K., van der Wall, B.G., Burley, C., Beaumier, P., McAlister, K., Pengel, K.: Recording and evaluation methods of PIV investigations on a helicopter rotor model. Exper. Fluids 36(1), 146–156 (2004). DOI 10.1007/s00348-003-0689-7. URL http://dx.doi.org/10.1007/s00348-003-0689-7
  43. 43.
    Riethmuller, M. (ed.): Particle Image Velocimetry. von Karman Institute for Fluid Dynamics. Lecture Series, VKI LS 1996-03. Von Karman Institute, Rhode-Saint-Genèse, Belgium (1996)Google Scholar
  44. 44.
    Riethmuller, M. (ed.): Particle Image Velocimetry and Associated Techniques. von Karman Institute for Fluid Dynamics Lecture Series, VKI LS 2000-01. Von Karman Institute, Rhode-Saint-Genèse, Belgium (2000)Google Scholar
  45. 45.
    Riethmuller, M., Scarano, F. (eds.): Advanced measuring techniques for supersonic flows. von Karman Institute for Fluid Dynamics Lecture Series, VKI LS 2005-01. Von Karman Institute, Rhode-Saint-Genèse, Belgium (2005). URL https://store.vki.ac.be/lecture-series-monographs/measurement-techniques/advanced-measuring-techniques-for-supersonic-flows.html
  46. 46.
    Roehle, I.: Three-dimensional Doppler global velocimetry in the flow of a fuel spray nozzle and in the wake region of a car. Flow Meas. Instrum. 7(3–4), 287–294 (1996). DOI 10.1016/S0955-5986(97)00011-3. URL https://dx.doi.org/10.1016/S0955-5986(97)00011-3
  47. 47.
    Rotta, J.: Die Aerodynamische Versuchsanstalt in Göttingen, ein Werk Ludwig Prandtls. Vandenhoeck & Ruprecht, Göttingen, Germany (1990)Google Scholar
  48. 48.
    Royer, H., Stanislas, M.: Stereoscopic and holographic approaches to get the third velocity component in PIV. Particle Image Velocimetry. von Karman Institute for Fluid Dynamics Lecture Series 1996–03, pp. I1–I56. Von Karman Institute, Rhode-Saint-Genèse, Belgium (1996)Google Scholar
  49. 49.
    Samimy, M., Wernet, M.P.: Review of planar multiple-component velocimetry in high-speed flows. AIAA J. 38(4), 553–574 (2000). DOI 10.2514/2.1004. URL https://dx.doi.org/10.2514/2.1004
  50. 50.
    Scarano, F.: Iterative image deformation methods in PIV. Meas. Sci. Technol. 13(1), R1 (2002). DOI 10.1088/0957-0233/13/1/201. URL https://dx.doi.org/10.1088/0957-0233/13/1/201
  51. 51.
    Scarano, F., Riethmuller, M. (eds.): Recent advances in particle image velocimetry. von Karman Institute for Fluid Dynamics Lecture Series, VKI LS 2009-01. Von Karman Institute, Rhode-Saint-Genèse, Belgium (2009). URL https://store.vki.ac.be/lecture-series-monographs/measurement-techniques/recent-advances-in-particle-image-velocimetry.html
  52. 52.
    Schröder, A., Geisler, R., Staack, K., Elsinga, G.E., Scarano, F., Wieneke, B., Henning, A., Poelma, C., Westerweel, J.: Eulerian and Lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV. Exper. Fluids 50(4), 1071–1091 (2011). DOI 10.1007/s00348-010-1014-x. URL https://dx.doi.org/10.1007/s00348-010-1014-x
  53. 53.
    Schröder, A., Schanz, D., Geisler, R., Gesemann, S., Willert, C.E.: Near-wall turbulence characterization using 4D-PTV “Shake-The-Box”. In: 11th International Symposium on Particle Image Velocimetry - PIV2015. Santa Barbara (CA), USA (2015)Google Scholar
  54. 54.
    Schröder, A., Willert, C.E. (eds.): Particle Image Velocimetry: New Developments and Recent Applications. Topics in Applied Physics, vol. 112. Springer, Berlin (2008). DOI 10.1007/978-3-540-73528-1. URL https://dx.doi.org/10.1007/978-3-540-73528-1
  55. 55.
    Sirohi, R.S.: Speckle metrology. In: Optical Science and Engineering, vol. 38. Taylor and Francis (1993)Google Scholar
  56. 56.
    Stanislas, M., Kompenhans, J., Westerweel, J.: Particle Image Velocimetry: Progress Towards Industrial Application. Fluid Mechanics and Its Applications. Springer, Netherlands (2000). DOI 10.1007/978-94-017-2543-9. URL https://dx.doi.org/10.1007/978-94-017-2543-9
  57. 57.
    Stanislas, M., Okamoto, K., Kähler, C.J.: Main results of the First International PIV Challenge. Meas. Sci. Technol. 14(10), R63 (2003). DOI 10.1088/0957-0233/14/10/201. URL http://stacks.iop.org/0957-0233/14/i=10/a=201
  58. 58.
    Stanislas, M., Okamoto, K., Kähler, C.J., Westerweel, J.: Main results of the Second International PIV Challenge. Exper. Fluids 39(2), 170–191 (2005). DOI 10.1007/s00348-005-0951-2. URL http://dx.doi.org/10.1007/s00348-005-0951-2
  59. 59.
    Stanislas, M., Okamoto, K., Kähler, C.J., Westerweel, J., Scarano, F.: Main results of the third international PIV challenge. Exper. Fluids 45(1), 27–71 (2008). DOI 10.1007/s00348-008-0462-z. URL http://dx.doi.org/10.1007/s00348-008-0462-z
  60. 60.
    Stanislas, M., Westerweel, J., Kompenhans, J.: Particle Image Velocimetry: Recent Improvements: Proceedings of the EUROPIV 2 Workshop held in Zaragoza, Spain, March 31 – April 1, 2003. Springer, Berlin (2004). DOI 10.1007/978-3-642-18795-7. https://dx.doi.org/10.1007/978-3-642-18795-7
  61. 61.
    Tietjens, O.: Hydro- und Aeromechanik – nach Vorlesungen von L. Prandtl, vol. 2. Julius Springer, Berlin (1931)Google Scholar
  62. 62.
    Tropea, C., Yarin, A.L., Foss, J.F.: Springer Handbook of Experimental Fluid Mechanics. Springer, Berlin (2007). DOI 10.1007/978-3-540-30299-5. URL https://dx.doi.org/10.1007/978-3-540-30299-5
  63. 63.
    Vogt, A., Baumann, P., Kompenhans, J., Gharib, M.: Investigations of a wing tip vortex in air by means of DPIV. In: Advanced Measurement and Ground Testing Conference, New Orleans, LA, 17–20 June. American Institute of Aeronautics and Astronautics (1996). DOI 10.2514/6.1996-2254. URL https://dx.doi.org/10.2514/6.1996-2254
  64. 64.
    Westerweel, J.: Digital particle image velocimetry: Theory and application. Ph.D. thesis, Mechanical Maritime and Materials Engineering, Delft University of Technology (1993). URL http://repository.tudelft.nl/islandora/object/uuid:85455914-6629-4421-8c77-27cc44e771ed/datastream/OBJ/download
  65. 65.
    Wieneke, B.: Stereo-PIV using self-calibration on particle images. Exper. Fluids 39(2), 267–280 (2005). DOI 10.1007/s00348-005-0962-z. URL https://dx.doi.org/10.1007/s00348-005-0962-z
  66. 66.
    Willert, C.E.: Assessment of camera models for use in planar velocimetry calibration. Exper. Fluids 41(1), 135–143 (2006). DOI 10.1007/s00348-006-0165-2. URL https://dx.doi.org/10.1007/s00348-006-0165-2
  67. 67.
    Willert, C.E., Gharib, M.: Digital particle image velocimetry. Exper. Fluids 10(4), 181–193 (1991). DOI 10.1007/BF00190388. URL https://dx.doi.org/10.1007/BF00190388
  68. 68.
    Willert, C.E., Kompenhans, J.: Particle Image Velocimetry (PIV) analysis of Ludwig Prandtl’s historic flow visualisation films. Deutsches Zentrum für Luft- und Raumfahrt (DLR), Technische Informationsbibliothek (TIB), Hannover, Germany (2010). DOI 10.5446/12719. URL https://doi.org/10.5446/12719

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations