Skip to main content

Image Guided and Robot Assisted Precision Surgery

  • Chapter
  • First Online:

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 140))

Abstract

Computer aided surgery (CAS) which integrates image guidance with surgical robot technologies is well accepted worldwide because of improved precision and small incisions. In this chapter, three key technologies in CAS will be introduced: (1) image processing based guidance, which involves analysis and integration of multimodality medical information; (2) 3D augmented reality based image guidance, which focuses on intuitive visualization of medical images; (3) various surgical robots that can be implemented precisely to complete complex tasks. Eventually, we discuss the future developments of image guidance and surgical robots in precise CAS.

Fang Chen and Jia Liu—equally contributed

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Takakura, K., Iseki, H., Dohi, T.: Computer-Aided Aurgery. In: Computer-Assisted Neurosurgery, pp. 101–104. Springer, Japan (1998)

    Google Scholar 

  2. Berg, W.A., Gutierrez, L., NessAiver, M.S., Carter, W.B., Bhargavan, M., Lewis, R.S., Ioffe, O.B.: Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer 1. Radiology 233(3), 830–849 (2004)

    Article  Google Scholar 

  3. Sati, M., De Guise, J.A., Drouin, G.: Computer assisted knee surgery: diagnostics and planning of knee surgery. Comput. Aided Surg. 2(2), 108–123 (1997)

    Article  Google Scholar 

  4. Yaniv, Z., Cleary, K.: Image-guided procedures: a review. Comput. Aided Interv. Med. Robot. 3 (2006)

    Google Scholar 

  5. Fuchs, K.H.: Minimally invasive surgery. Endoscopy 34(2), 154–159 (2002)

    Article  Google Scholar 

  6. Arbel, T., Arbel, T., Morandi, X., Comeau, R.M., Collins, D.L.: Automatic non-linear MRI-ultrasound registration for the correction of intra-operative brain deformations. Comput. Aided Surg. 9(4), 123–136 (2004)

    Article  MATH  Google Scholar 

  7. Liao, H., Wong, K.K., Xue, Z.: Introduction to the special issue of image-guided surgical planning and therapy. Comput. Med. Imaging Graph. 34(1), 1–2 (2010)

    Article  Google Scholar 

  8. Sharifi, A., Jones, R., Ayoub, A., Moos, K., Walker, F., Khambay, B., McHugh, S.: How accurate is model planning for orthognathic surgery. Int. J. Oral Maxillofac. Surg. 37(12), 1089–1093 (2008)

    Article  Google Scholar 

  9. Penkner, K., Santler, G., Mayer, W., Pierer, G., Lorenzoni, M.: Fabricating auricular prostheses using three-dimensional soft tissue models. J. Prosthet. Dent. 82(4), 482–484 (1999)

    Article  Google Scholar 

  10. Reitinger, B., Bornik, A., Beichel, R., Schmalstieg, D.: Liver surgery planning using virtual reality. IEEE Comput. Graph. Appl. 6, 36–47 (2006)

    Article  Google Scholar 

  11. De Momi, E., Chapuis, J., Pappas, I., Ferrigno, G., Hallermann, W., Schramm, A., Caversaccio, M.: Automatic extraction of the mid-facial plane for cranio-maxillofacial surgery planning. Int. J. Oral Maxillofac. Surg. 35(7), 636–642 (2006)

    Article  Google Scholar 

  12. Kuhnt, D., Bauer, M.H., Nimsky, C.: Brain shift compensation and neurosurgical image fusion using intraoperative MRI: current status and future challenges. Crit. Rev.™ Biomed. Eng. 40(3) (2012)

    Google Scholar 

  13. Wein, W., Röper, B., Navab, N.: Automatic registration and fusion of ultrasound with CT for radiotherapy. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2005, pp. 303–311. Springer, Berlin (2005)

    Google Scholar 

  14. Dey, D., Gobbi, D.G., Slomka, P.J., Surry, K.J., Peters, T.M.: Automatic fusion of freehand endoscopic brain images to three-dimensional surfaces: creating stereoscopic panoramas. IEEE Trans. Med. Imaging 21(1), 23–30 (2002)

    Article  Google Scholar 

  15. Khadem, R., Yeh, C.C., Sadeghi-Tehrani, M., Bax, M.R., Johnson, J.A., Welch, J.N., Shahidi, R.: Comparative tracking error analysis of five different optical tracking systems. Comput. Aided Surg. 5(2), 98–107 (2000)

    Article  Google Scholar 

  16. Liu, Y., Liao, R., Lv, X.: Extended contrast detection on fluoroscopy and angiography for image-guided trans-catheter aortic valve implantations (TAVI). In: SPIE Medical Imaging, pp. 831618–831618. International Society for Optics and Photonics (2012)

    Google Scholar 

  17. Ungi, T., Abolmaesumi, P., Jalal, R., Welch, M., Ayukawa, I., Nagpal, S., Mousavi, P.: Spinal needle navigation by tracked ultrasound snapshots. IEEE Trans. Biomed. Eng. 59(10), 2766–2772 (2012)

    Article  Google Scholar 

  18. BrainLab. Cranial navigation application. http://www.brainlab.com/art/2811/4/cranial-navigation-application

  19. Medtronic. Image-guided surgery overview. http://wwwp.medtronic.com/

  20. Gooya, A., Liao, H., Sakuma, I.: Generalization of geometrical flux maximizing flow on Riemannian manifolds for improved volumetric blood vessel segmentation. Comput. Med. Imaging Graph. 36(6), 474–483 (2012)

    Article  Google Scholar 

  21. Ohya, T., Iwai, T., Luan, K., Kato, T., Liao, H., Kobayashi, E., Tohnai, I.: Analysis of carotid artery deformation in different head and neck positions for maxillofacial catheter navigation in advanced oral cancer treatment. Biomed. Eng. Online 11(1), 65 (2012)

    Article  Google Scholar 

  22. Luan, K., Ohya, T., Liao, H., Kobayashi, E., Sakuma, I.: Vessel bifurcation localization based on intraoperative three-dimensional ultrasound and catheter path for image-guided catheter intervention of oral cancers. Comput. Med. Imaging Graph. 37(2), 113–122 (2013)

    Article  Google Scholar 

  23. Liao, H., Tsuzuki, M., Mochizuki, T., Kobayashi, E., Chiba, T., Sakuma, I.: Fast image mapping of endoscopic image mosaics with three-dimensional ultrasound image for intrauterine fetal surgery. Minim. Invasive Ther. Allied Technol. 18(6), 332–340 (2009)

    Article  Google Scholar 

  24. Liao, H., Noguchi, M., Maruyama, T., Muragaki, Y., Kobayashi, E., Iseki, H., Sakuma, I.: An integrated diagnosis and therapeutic system using intra-operative 5-aminolevulinic-acid-induced fluorescence guided robotic laser ablation for precision neurosurgery. Med. Image Anal. 16(3), 754–766 (2012)

    Article  Google Scholar 

  25. Wang, J., Ohya, T., Liao, H., Sakuma, I., Wang, T., Tohnai, I., Iwai, T.: Intravascular catheter navigation using path planning and virtual visual feedback for oral cancer treatment. Int. J. Med. Robot. Comput. Assist. Surg. 7(2), 214–224 (2011)

    Article  Google Scholar 

  26. Yang, L., Wang, J., Kobayashi, E., Liao, H., Yamashita, H., Sakuma, I., Chiba, T.: Ultrasound image-based endoscope localization for minimally invasive fetoscopic surgery. In: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pp. 1410–1413. IEEE (2013)

    Google Scholar 

  27. Peters, T., Cleary, K.: Image-Guided Interventions: Technology and Applications. Springer, Berlin (2008)

    Book  Google Scholar 

  28. Liao, H., Edwards, P.J.: Introduction to the special issues of mixed reality guidance of therapy-Towards clinical implementation. Comput. Med. Imag. Gr. Off J. Comput. Med. Imaging Soc. 37(2), 81 (2013)

    Article  Google Scholar 

  29. Lamata, P., Ali, W., Cano, A., et al.: Augmented reality for minimally invasive surgery: overview and some recent advances. Augment Real 73–98 (2010)

    Google Scholar 

  30. Sauer, F., Vogt, S., Khamene, A.: Augmented reality. Image-Guided Interventions, pp. 81–119. Springer, US (2008)

    Chapter  Google Scholar 

  31. Hatch, J.F.: Reference-display system for the integration of CT scanning and the operating microscope (1984)

    Google Scholar 

  32. Edwards, P.J., Hill, D.L., Hawkes, D.J., Spink, R., Colchester, A.C., Strong, M.A., Gleeson, M.M.: Neurosurgical guidance using the stereo microscope. In: Computer Vision, Virtual Reality and Robotics in Medicine, pp. 555–564. Springer, Berlin (1995)

    Google Scholar 

  33. Birkfellner, W., Figl, M., Huber, K., Watzinger, F., Wanschitz, F., Hummel, J., Bergmann, H.: A head-mounted operating binocular for augmented reality visualization in medicine-design and initial evaluation. IEEE Trans. Med. Imaging 21(8), 991–997 (2002)

    Article  MATH  Google Scholar 

  34. Bajura, M., Fuchs, H., Ohbuchi, R.: Merging virtual objects with the real world: Seeing ultrasound imagery within the patient. In: ACM SIGGRAPH Computer Graphics, vol. 26, no. 2, pp. 203–210. ACM (1992)

    Google Scholar 

  35. Sauer, F., Wenzel, F., Vogt, S., Tao, Y., Genc, Y., Bani-Hashemi, A.: Augmented workspace: Designing an AR testbed. In Augmented Reality. In: IEEE and ACM International Symposium on ISAR 2000. Proceedings, pp. 47–53. IEEE (2000)

    Google Scholar 

  36. Luo, G., Peli, E.: Use of an augmented-vision device for visual search by patients with tunnel vision. Invest. Ophthalmol. Vis. Sci. 47(9), 4152 (2006)

    Article  Google Scholar 

  37. Masutani, Y., Iwahara, M., Samuta, O., Nishi, Y., Suzuki, N., Suzuki, M., Takakura, K.: Development of integral photography-based enhanced reality visualization system for surgical support. In: Proceedings of ISCAS, vol. 95, pp. 16–17 (1995)

    Google Scholar 

  38. Liao, H., Nakajima, S., Iwahara, M., Kobayashi, E., Sakuma, I., Yahagi, N., Dohi, T.: Intra-operative real-time 3-D information display system based on integral videography. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2001, pp. 392–400. Springer, Berlin (2001)

    Google Scholar 

  39. Lippmann, G.: Epreuves reversibles donnant la sensation du relief. J. Phys. Theor. Appl. 7(1), 821–825 (1908)

    Article  Google Scholar 

  40. Liao, H., Nomura, K., Dohi, T.: Autostereoscopic integral photography imaging using pixel distribution of computer graphics generated image. In: ACM SIGGRAPH 2005 Posters, p. 73. ACM (2005)

    Google Scholar 

  41. Wang, J., Suenaga, H., Liao, H., Hoshi, K., Yang, L., Kobayashi, E., Sakuma, I.: Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation. Comput. Med. Imaging Graph. 40, 147–159 (2015)

    Article  Google Scholar 

  42. Marmulla, R., Hassfeld, S., Lüth, T., Mühling, J.: Laser-scan-based navigation in cranio-maxillofacial surgery. J. Cranio-Maxillofac. Surg. 31(5), 267–277 (2003)

    Article  Google Scholar 

  43. Liao, H., Inomata, T., Hata, N., Dohi, T.: Integral videography overlay navigation system using mutual information-based registration. In: Medical Imaging and Augmented Reality, pp. 361–368. Springer, Berlin (2004)

    Google Scholar 

  44. Herlambang, N., Liao, H., Matsumiya, K., Masamune, K., Dohi, T.: Real-time autostereoscopic visualization of registration-generated 4D MR image of beating heart. In: Medical Imaging and Augmented Reality, pp. 349–358. Springer, Berlin (2008)

    Google Scholar 

  45. Herlambang, N., Yamashita, H., Liao, H., et al.: Real time integral videography auto-stereoscopic surgery navigation system using intra-operative 3D ultrasound: system design and in-vivo feasibility study. In: AMI-ARCS, vol. 61

    Google Scholar 

  46. Gatti, D.M., Shabalin, A.A., Lam, T.C., et al.: Fast map: fast eQTL mapping in homozygous populations. Bioinformatics 25(4), 482–489 (2009)

    Google Scholar 

  47. Halín, N., Loula, P., Aarnio, P.: Experiences of using the endo assist-robot in surgery. Stud. Health Technol. Inform. 125, 161–163 (2006)

    Google Scholar 

  48. Kraft, B.M., Jäger, C., Kraft, K., Leibl, B.J., Bittner, R.: The AESOP robot system in laparoscopic surgery: increased risk or advantage for surgeon and patient. Surg. Endosc. Other Interv. Tech. 18(8), 1216–1223 (2004)

    Article  Google Scholar 

  49. Butner, S.E., Ghodoussi, M.: A real-time system for tele-surgery. In: ICDCS, p. 0236. IEEE (2001)

    Google Scholar 

  50. Miyamoto, S., Sugiura, M., Watanabe, S., Oyama, K.: Development of minimally invasive surgery systems. Hitachi Rev. 52(4), 189 (2003)

    Google Scholar 

  51. Zhao, D., Ma, L., Ma, C., Tang, J., Liao, H.: Floating autostereoscopic 3D display with multidimensional images for telesurgical visualization. Int. J. Comput. Assist. Radiol. Surg. 11, 207–215 (2016)

    Article  Google Scholar 

  52. Taylor, R.H., Mittelstadt, B.D., Paul, H., Hanson, W., Kazanzides, P., Zuhars, J.F., Bargar, W.L.: An image-directed robotic system for precise orthopaedic surgery. IEEE Trans. Robot. Autom. 10(3), 261–275 (1994)

    Article  Google Scholar 

  53. Kienzle, T.C., Stulberg, S.D., Peshkin, M., Quaid, A., Wu, C.: An integrated CAD-robotics system for total knee replacement surgery. In: Proceedings of IEEE International Conference on Robotics and Automation, Atlanta, pp. 899–894 (1993)

    Google Scholar 

  54. Kwoh, Y.S., Hou, J., Jonckheere, E., Hayati, S.: A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans. Biomed. Eng. 35(2), 153–160 (1988)

    Article  Google Scholar 

  55. Melzer, A., Gutmann, B., Remmele, T., Wolf, R., Lukoscheck, A., Bock, M., Fischer, H.: Innomotion for percutaneous image-guided interventions. IEEE Eng. Med. Biol. Mag. 27(3), 66–73 (2008)

    Article  Google Scholar 

  56. Li, Q.H., Zamorano, L., Pandya, A., Perez, R., Gong, J., Diaz, F.: The application accuracy of the NeuroMate robot—a quantitative comparison with frameless and frame-based surgical localization systems. Comput. Aided Surg. 7(2), 90–98 (2002)

    Article  Google Scholar 

  57. Stoianovici, D., Whitcomb, L.L., Anderson, J.H., Taylor, R.H., Kavoussi, L.R.: A modular surgical robotic system for image guided percutaneous procedures. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI’98, pp. 404–410. Springer, Berlin (1998)

    Google Scholar 

  58. Taylor, R.H., Funda, J., Eldridge, B., Gomory, S., Gruben, K., LaRose, D., …, Anderson, J.: A telerobotic assistant for laparoscopic surgery. IEEE Eng. Med. Biol. Mag. 14(3), 279–288 (1995)

    Google Scholar 

  59. Liao, H., Suzuki, H., Matsumiya, K., Masamune, K., Dohi, T., Chiba, T.: Fetus-supporting flexible manipulator with balloon-type stabilizer for endoscopic intrauterine surgery. Int. J. Med. Robot. Comput. Assist. Surg. 4(3), 214–223 (2008)

    Article  Google Scholar 

  60. Dogangil, G., Davies, B. L., y Baena, F.R.: A review of medical robotics for minimally invasive soft tissue surgery. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 224(5), 653–679 (2010)

    Google Scholar 

  61. Taylor, R.H., Joskowicz, L., Williamson, B., Guéziec, A., Kalvin, A., Kazanzides, P., …, Sahay, A.: Computer-integrated revision total hip replacement surgery: concept and preliminary results. Med. Image Anal. 3(3), 301–319 (1999)

    Google Scholar 

  62. Tarwala, R., Dorr, L.D.: Robotic assisted total hip arthroplasty using the MAKO platform. Curr. Rev. Musculoskelet. Med. 4(3), 151–156 (2011)

    Article  Google Scholar 

  63. Yamashita, H., Matsumiya, K., Masamune, K., Liao, H., Chiba, T., Dohi, T.: Two-DOFs bending forceps manipulator of 3.5-mm diameter for intrauterine fetus surgery: feasibility evaluation. Int. J. Comput. Assist. Radiol. Surg. 1, 218 (2006)

    Google Scholar 

  64. Patel, S., Rajadhyaksha, M., Kirov, S., Li, Y., Toledo-Crow, R.: Endoscopic laser scalpel for head and neck cancer surgery. In: SPIE BiOS International Society for Optics and Photonics. p. 8207, 82071S–82071S (2012)

    Google Scholar 

  65. Liao, H., Noguchi, M., Maruyama, T., Muragaki, Y., Iseki, H., Kobayashi, E., Sakuma, I.: Automatic focusing and robotic scanning mechanism for precision laser ablation in neurosurgery. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 325–330. IEEE (2010)

    Google Scholar 

  66. Su, B., Shi, Z., Liao, H.: Micro laser ablation system integrated with image sensor for minimally invasive surgery. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 2043–2048. IEEE (2014)

    Google Scholar 

  67. Hynynen, K., Pomeroy, O., Smith, D.N., Huber, P.E., McDannold, N.J., Kettenbach, J., … Jolesz, F.A.: MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study 1. Radiology 219(1), 176–185 (2001)

    Google Scholar 

  68. Yonetsuji, T., Ando, T., Wang, J., Fujiwara, K., Itani, K., Azuma, T., Liao, H.: A novel high intensity focused ultrasound robotic system for breast cancer treatment. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2013, pp. 388–395. Springer, Berlin (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongen Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, F., Liu, J., Liao, H. (2018). Image Guided and Robot Assisted Precision Surgery. In: Suzuki, K., Chen, Y. (eds) Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging. Intelligent Systems Reference Library, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-68843-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68843-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68842-8

  • Online ISBN: 978-3-319-68843-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics