Abstract
Multi-modal magnetic resonance imaging (MRI) is increasingly used in neuroscience research, as it allowed the non-invasive investigation of structure and function of the human brain in health and pathology. One of the most important applications of multi-modal MRI is the provision of vital diagnostic data for neurologic and psychiatric disorders. As traditional MRI researches using univariate analyses can only reveal disease-related structural and functional alterations at group level which limited the clinical application, and recent attention has turned toward integrating multi-modal neuroimaging and computer-aided prognosis (CAD) technology, especially machine learning, to assist clinical disease diagnose. Research in this area is growing exponentially, and therefore it is meaningful to review the current and future development of this emerging area. Hence, in this paper, based on our own studies and contributions, we review the recent advances in multi-modal MRI and CAD technologies, and their applications to assist the clinical diagnosis of three common neurologic and psychiatric disorders, namely, Alzheimer’s disease, Attention deficit/hyperactivity disorder and Tourette syndrome. We extracted multi-modal features from structural, diffusion and resting-state functional MRI, then different feature selection methods and classifiers were applied. In addition, we applied different feature fusion schemes (e.g. multiple kernel learning) to combining multi-modal features for classification. Our experiments show that using feature fusion techniques to integrate multi-modal features can yield better classification results for diseases prediction, which may outline some future directions for multi-modal neuroimaging where researchers can design more advanced methods and models for neurologic and psychiatric research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Friston, K.J.: Modalities, modes, and models in functional neuroimaging. Science 326, 399–403 (2009)
Zakzanis, K.K., Graham, S.J., Campbell, Z.: A meta-analysis of structural and functional brain imaging in dementia of the Alzheimer’s type: a neuroimaging profile. Neuropsychol. Rev. 13, 1–18 (2003)
Binnewijzend, M.A., Schoonheim, M.M., Sanz-Arigita, E., Wink, A.M., van der Flier, W.M., Tolboom, N., Adriaanse, S.M., Damoiseaux, J.S., Scheltens, P., van Berckel, B.N., Barkhof, F.: Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 33, 2018–2028 (2012)
Stein, D.J., Fontenelle, L.F., Reed, G.M.: Obsessive-compulsive and related disorders in ICD-11. Revista brasileira de psiquiatria 36(Suppl 1), 1–2 (2014)
Zhong, Z., Zhao, T., Luo, J., Guo, Z., Guo, M., Li, P., Sun, J., He, Y., Li, Z.: Abnormal topological organization in white matter structural networks revealed by diffusion tensor tractography in unmedicated patients with obsessive-compulsive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 51, 39–50 (2014)
Hong, S.B., Zalesky, A., Fornito, A., Park, S., Yang, Y.H., Park, M.H., Song, I.C., Sohn, C.H., Shin, M.S., Kim, B.N., Cho, S.C., Han, D.H., Cheong, J.H., Kim, J.W.: Connectomic disturbances in attention-deficit/hyperactivity disorder: a whole-brain tractography analysis. Biol. Psychiatry 76, 656–663 (2014)
Hart, H., Radua, J., Nakao, T., Mataix-Cols, D., Rubia, K.: Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry 70, 185–198 (2013)
Liu, Y., Miao, W., Wang, J., Gao, P., Yin, G., Zhang, L., Lv, C., Ji, Z., Yu, T., Sabel, B.A., He, H., Peng, Y.: Structural abnormalities in early Tourette syndrome children: a combined voxel-based morphometry and tract-based spatial statistics study. PLoS ONE 8, e76105 (2013)
Worbe, Y., Marrakchi-Kacem, L., Lecomte, S., Valabregue, R., Poupon, F., Guevara, P., Tucholka, A., Mangin, J.F., Vidailhet, M., Lehericy, S., Hartmann, A., Poupon, C.: Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome. Brain 138, 472–482 (2015)
Ellison-Wright, I., Bullmore, E.: Anatomy of bipolar disorder and schizophrenia: a meta-analysis. Schizophr. Res. 117, 1–12 (2010)
Shergill, S.S., Brammer, M.J., Williams, S.C., Murray, R.M., Mcguire, P.K.: Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch. Gen. Psychiatry 57, 1033–1038 (2000)
Etkin, A., Wager, T.D.: Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164, 1476–1488 (2007)
Liao, M., Yang, F., Zhang, Y., He, Z., Su, L., Li, L.: White matter abnormalities in adolescents with generalized anxiety disorder: a diffusion tensor imaging study. BMC Psychiatry 14, 41 (2014)
Orrù, G., Pettersson-Yeo, W., Marquand, A.F., Sartori, G., Mechelli, A.: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 36, 1140–1152 (2012)
Cerasa, A., Cherubini, A., Peran, P.: Multimodal MRI in neurodegenerative disorders. Neurol. Res. Int. 2012 (2012)
Arimura, H., Magome, T., Yamashita, Y., Yamamoto, D.: Computer-aided diagnosis systems for brain diseases in magnetic resonance images. Algorithms 2, 925–952 (2009)
Dorrius, M.D., Weide, M.D., Ooijen, P., Pijnappel, R.M.: Computer-aided detection in breast MRI: a systematic review and meta-analysis. Int. J. Med. Radiol. 21, 1600–1608 (2011)
Hidetaka, A., Takashi, Y., Seiji, K., Kazuhiro, T., Hiroshi, K., Futoshi, M., Hiroshi, H., Shuji, S., Fukai, T., Yoshiharu, H.: Automated method for identification of patients with Alzheimer’s disease based on three-dimensional MR images. Acad. Radiol. 15, 274–284 (2008)
Liu, F., Wee, C.Y., Chen, H., Shen, D.: Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s Disease and mild cognitive impairment identification. Neuroimage 84, 466–475 (2014)
Cherkassky, V.: The nature of statistical learning theory. IEEE Trans. Neural Netw./A Publication of the IEEE Neural Networks Council 8, 1564 (1997)
Fjell, A.M., Walhovd, K.B., Fennema-Notestine, C., McEvoy, L.K., Hagler, D.J., Holland, D., Brewer, J.B., Dale, A.M., Alzheimer’s Disease Neuroimaging, I.: CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. J. Neurosci. 30, 2088–2101 (2010)
Gerardin, E., Chetelat, G., Chupin, M., Cuingnet, R., Desgranges, B., Kim, H.S., Niethammer, M., Dubois, B., Lehericy, S., Garnero, L., Eustache, F., Colliot, O., Alzheimer’s Disease Neuroimaging, I.: Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. Neuroimage 47, 1476–1486 (2009)
Lanckriet, G.R., De Bie, T., Cristianini, N., Jordan, M.I., Noble, W.S.: A statistical framework for genomic data fusion. Bioinformatics 20, 2626–2635 (2004)
Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Arrighi, H.M.: Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. J. Alzheimers Assoc. 3, 186–191 (2007)
Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C., Morris, J.C., Rabins, P.V., Ritchie, K., Rossor, M., Thal, L., Winblad, B.: Current concepts in mild cognitive impairment. Arch. Neurol. 58, 1985–1992 (2001)
Grundman, M., Petersen, R.C., Ferris, S.H., Thomas, R.G., Aisen, P.S., Bennett, D.A., Foster Jr., N.L.,, J.C., Galasko, D.R., Doody, R.: Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. JAMA Neurol. 61, 59–66 (2004)
Jack Jr., C.R., Shiung, M.M., Weigand, S.D., O’Brien, P.C., Gunter, J.L., Boeve, B.F., Knopman, D.S., Smith, G.E., Ivnik, R.J., Tangalos, E.G., Petersen, R.C.: Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65, 1227–1231 (2005)
Detoledo, M.L., Stoub, T.M., Wilson, R.S., Bennett, D.A., Leurgans, S., Wuu, J., Turner, D.A.: MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol. Aging 25, 1197–1203 (2004)
Thompson, P.M., Mega, M.S., Woods, R.P., Zoumalan, C.I., Lindshield, C.J., Blanton, R.E., Moussai, J., Holmes, C.J., Cummings, J.L., Toga, A.W.: Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cereb. Cortex 11, 1–16 (2001)
Du, A.T., Schuff, N., Kramer, J.H., Rosen, H.J., Gorno-Tempini, M.L., Rankin, K., Miller, B.L., Weiner, M.W.: Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain 130, 1159–1166 (2007)
Dai, D., Wang, J., Hua, J., He, H.: Classification of ADHD children through multimodal magnetic resonance imaging. Front. Syst. Neurosci. 6, 63 (2012)
Biederman, J., Mick, E., Faraone, S.V.: Age-dependent decline of symptoms of attention deficit hyperactivity disorder: impact of remission definition and symptom type. Am. J. Psychiatry 157, 816–818 (2000)
Trull, T.J., Verges, A., Wood, P.K., Jahng, S., Sher, K.J.: The structure of diagnostic and statistical manual of mental disorders (4th edn., text revision) personality disorder symptoms in a large national sample. Pers. Disord. 3, 355–369 (2012)
Seidman, L.J., Valera, E.M., Makris, N.: Structural brain imaging of attention-deficit/hyperactivity disorder. Biol. Psychiatry 57, 1263–1272 (2005)
Valera, E.M., Faraone, S.V., Murray, K.E., Seidman, L.J.: Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol. Psychiatry 61, 1361–1369 (2007)
Semrud-Clikeman, M., Steingard, R.J., Filipek, P., Biederman, J., Bekken, K., Renshaw, P.F.: Using MRI to examine brain-behavior relationships in males with attention deficit disorder with hyperactivity. J. Am. Acad. Child Adolesc. Psychiatry 39, 477–484 (2000)
Overmeyer, S., Bullmore, E.T., Suckling, J., Simmons, A., Williams, S.C., Santosh, P.J., Taylor, E.: Distributed grey and white matter deficits in hyperkinetic disorder: MRI evidence for anatomical abnormality in an attentional network. Psychol. Med. 31, 1425–1435 (2001)
Kates, W.R., Frederikse, M., Mostofsky, S.H., Folley, B.S., Cooper, K., Mazur-Hopkins, P., Kofman, O., Singer, H.S., Denckla, M.B., Pearlson, G.D., Kaufmann, W.E.: MRI parcellation of the frontal lobe in boys with attention deficit hyperactivity disorder or Tourette syndrome. Psychiatry Res. 116, 63–81 (2002)
Bush, G., Frazier, J.A., Rauch, S.L., Seidman, L.J., Whalen, P.J., Jenike, M.A., Rosen, B.R., Biederman, J.: Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. Biol. Psychiatry 45, 1542–1552 (1999)
Teicher, M.H., Anderson, C.M., Polcari, A., Glod, C.A., Maas, L.C., Renshaw, P.F.: Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry. Nat. Med. 6, 470–473 (2000)
Durston, S., Tottenham, N.T., Thomas, K.M., Davidson, M.C., Eigsti, I.M., Yang, Y., Ulug, A.M., Casey, B.J.: Differential patterns of striatal activation in young children with and without ADHD. Biol. Psychiatry 53, 871–878 (2003)
Cao, Q., Zang, Y., Sun, L., Sui, M., Long, X., Zou, Q., Wang, Y.: Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. NeuroReport 17, 1033–1036 (2006)
Tian, L., Jiang, T., Wang, Y., Zang, Y., He, Y., Liang, M., Sui, M., Cao, Q., Hu, S., Peng, M., Zhuo, Y.: Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci. Lett. 400, 39–43 (2006)
Zang, Y.F., He, Y., Zhu, C.Z., Cao, Q.J., Sui, M.Q., Liang, M., Tian, L.X., Jiang, T.Z., Wang, Y.F.: Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 29, 83–91 (2007)
Liu, D., Yan, C., Ren, J., Yao, L., Kiviniemi, V.J., Zang, Y.: Using coherence to measure regional homogeneity of resting-state fMRI signal. Front. Syst. Neurosci. 4, 24 (2015)
Xavier Castellanos, F., Margulies, D.S., Clare, K., Uddin, L.Q., Manely, G., Andrew, K., David, S., Zarrar, S., Adriana, D.M., Bharat, B.: Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry 63, 332–337 (2008)
Dai, D., He, H., Vogelstein, J.T., Hou, Z.: Accurate prediction of AD patients using cortical thickness networks. Mach. Vis. Appl. 24, 1445–1457 (2013)
Cooper, J.: Diagnostic and statistical manual of mental disorders (4th edn., text revision) (DSM-IV-TR). Br. J. Psychiatry 179, 85–85 (2001)
Stokes, A., Bawden, H.N., Camfield, P.R., Backman, J.E., Dooley, J.M.: Peer problems in Tourettes disorder. Pediatrics 87, 936–942 (1991)
Lucas, A.R., Beard, C.M., Rajput, A.H., Kurland, L.T.: Tourette syndrome in Rochester, Minnesota, 1968–1979. Adv. Neurol. 35, 267–269 (1982)
Knight, T., Steeves, T., Day, L., Lowerison, M., Jette, N., Pringsheim, T.: Prevalence of tic disorders: a systematic review and meta-analysis. Pediatr. Neurol. 47, 77–90 (2012)
Mason, A., Banerjee, S., Eapen, V., Zeitlin, H., Robertson, M.M.: The prevalence of Tourette syndrome in a mainstream school population. Dev. Med. Child Neurol. 40, 292–296 (1998)
Stern, J.S., Burza SRobertson, M.M.: Gilles de la Tourette’s syndrome and its impact in the UK. Postgrad. Med. J. 81, 12–19 (2005)
Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487–1505 (2006)
Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000)
Cheng, B., Braass, H., Ganos, C., Treszl, A., Biermann-Ruben, K., Hummel, F.C., Muller-Vahl, K., Schnitzler, A., Gerloff, C., Munchau, A., Thomalla, G.: Altered intrahemispheric structural connectivity in Gilles de la Tourette syndrome. NeuroImage Clin. 4, 174–181 (2014)
Wen, H., Liu, Y., Wang, J., Zhang, J., Peng, Y., He, H.: Using support vector machines with tract-based spatial statistics for automated classification of Tourette syndrome children. In: SPIE Medical Imaging, pp. 97852Q–97852Q-97859. International Society for Optics and Photonics (Year)
Wen, H., Liu, Y., Wang, J., Zhang, J., Peng, Y., He, H.: A diagnosis model for early Tourette syndrome children based on brain structural network characteristics. In: SPIE Medical Imaging, pp. 97852R–97852R-97859. International Society for Optics and Photonics (Year)
Wen, H., Liu, Y., Wang, J., Rekik, I., Zhang, J., Zhang, Y., Tian, H., Peng, Y., He, H.: Combining tract- and atlas-based analysis reveals microstructural abnormalities in early Tourette syndrome children. Hum. Brain Mapp. 37, 1903–1919 (2016)
Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17, 87–97 (1998)
Hastreiter, P., Rezksalama, C., Tomandl, B., Eberhardt, K.E.W., Ertl, T.: BFb: Medical Image Computing and Computer-Assisted Intervention—MICCAI’98. Springer, Berlin (1998)
June Sic, K., Vivek, S., Jun Ki, L., Jason, L., Yasser, A.D.B., David, M.D., Jong Min, L., Sun, I., Kim, Evans, A.C.: Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27, 210–221 (2005)
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002)
Shiva, K., Ryan, N.S., Malone, I.B., Marc, M., David, C., Ridgway, G.R., Hui, Z., Fox, N.C., Sebastien, O.: The importance of group-wise registration in tract based spatial statistics study of neurodegeneration: a simulation study in Alzheimer’s disease. PLoS ONE 7, e45996–e45996 (2012)
Smith, S.M., Nichols, T.E.: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44, 83–98 (2009)
Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186 (2009)
Liu, Y., Duan, Y.Y., He, Y., Wang, J., Xia, M.R., Yu, C.S., Dong, H.Q., Ye, J., Butzkueven, H., Li, K.C., Shu, N.: Altered topological organization of white matter structural networks in patients with neuromyelitis optica. Mult. Scler. J. 19, 666–667 (2013)
Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269 (1999)
Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012)
Ashburner, J., Friston, K.J.: Unified segmentation. Neuroimage 26, 839–851 (2005)
Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Essen, D.C.V., Raichle, M.E.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102, 9673–9678 (2005)
Meng, L., Yuan, Z., Tianzi, J., Zhening, L., Lixia, T., Haihong, L., Yihui, H.: Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport 17, 209–213 (2006)
Xiao-Wei, S., Zhang-Ye, D., Xiang-Yu, L., Su-Fang, L., Xi-Nian, Z., Chao-Zhe, Z., Yong, H., Chao-Gan, Y., Yu-Feng, Z.: REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS ONE 6, e25031 (2011)
Zang, Y., Jiang, T., Lu, Y., He, Y., Tian, L.: Regional homogeneity approach to fMRI data analysis. Neuroimage 22, 394–400 (2004)
Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97, 273–324 (1997)
Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Proceedings of European Conference on Machine Learning, vol. 784, pp. 356–361 (1996)
Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)
Sun, Y., Todorovic, S., Goodison, S.: Local-learning-based feature selection for high-dimensional data analysis. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1610–1626 (2010)
Wilson, S.M., Ogar, J.M., Laluz, V., Growdon, M., Jang, J., Glenn, S., Miller, B.L., Weiner, M.W., Gorno-Tempini, M.L.: Automated MRI-based classification of primary progressive aphasia variants. Neuroimage 47, 1558–1567 (2009)
Dyrba, M., Ewers, M., Wegrzyn, M., Kilimann, I., Plant, C., Oswald, A., Meindl, T., Pievani, M., Bokde, A.L.W., Fellgiebel, A.: Combining DTI and MRI for the Automated Detection of Alzheimer’s Disease Using a Large European Multicenter Dataset. Springer, Berlin (2012)
Grana, M., Termenon, M., Savio, A., Gonzalez-Pinto, A., Echeveste, J., Perez, J.M., Besga, A.: Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson’s correlation. Neurosci. Lett. 502, 225–229 (2011)
O’Dwyer, L., Lamberton, F., Bokde, A.L.W., Ewers, M., Faluyi, Y.O., Tanner, C., Mazoyer, B., O’Neill, D., Bartley, M., Collins, D.R., Coughlan, T., Prvulovic, D., Hampel, H.: Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. PLoS ONE 7 (2012)
Church, J.A., Fair, D.A., Dosenbach, N.U.F., Cohen, A.L., Miezin, F.M., Petersen, S.E., Schlaggar, B.L.: Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain 132, 225–238 (2009)
Neuner, I., Kupriyanova, Y., Stocker, T., Huang, R.W., Posnansky, O., Schneider, F., Shah, N.J.: Microstructure assessment of grey matter nuclei in adult Tourette patients by diffusion tensor imaging. Neurosci. Lett. 487, 22–26 (2011)
Greene, D.J., Church, J.A., Dosenbach, N.U.F., Nielsen, A.N., Adeyemo, B., Nardos, B., Petersen, S.E., Black, K.J., Schlaggar, B.L.: Multivariate pattern classification of pediatric Tourette syndrome using functional connectivity MRI. Dev. Sci. (2016)
Wee, C.Y., Yap, P.T., Li, W., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D.: Enriched white matter connectivity networks for accurate identification of MCI patients. Neuroimage 54, 1812–1822 (2011)
Werner, C.J., Stocker, T., Kellermann, T., Wegener, H.P., Schneider, F., Shah, N.J., Neuner, I.: Altered amygdala functional connectivity in adult Tourette’s syndrome. Eur. Arch. Psychiatry Clin. Neurosci. 260(Suppl 2), S95–S99 (2010)
Acknowledgements
This work was supported by National Natural Science Foundation of China (91520202, 61271151), and Youth Innovation Promotion Association CAS.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
He, H., Wen, H., Dai, D., Wang, J. (2018). Computer-Aided Prognosis: Accurate Prediction of Patients with Neurologic and Psychiatric Diseases via Multi-modal MRI Analysis. In: Suzuki, K., Chen, Y. (eds) Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging. Intelligent Systems Reference Library, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-68843-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-68843-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68842-8
Online ISBN: 978-3-319-68843-5
eBook Packages: EngineeringEngineering (R0)