Skip to main content

Multi-modality Feature Learning in Diagnoses of Alzheimer’s Disease

  • Chapter
  • First Online:
Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 140))

Abstract

Many machine learning and pattern classification methods have been applied to the diagnosis of Alzheimer’s disease (AD) and its prodromal stage, which is mild cognitive impairment (MCI). Recently, multi-task feature selection methods are typically used for joint selection of common features across multiple modalities. In this chapter, we review several latest multi-modality feature learning works in diagnoses of AD. Specifically, multi-task feature selection (MTFS) is proposed to jointly select the common subset of relevant features for multiple variables from each modality. Based on MTFS, a manifold regularized multi-task feature learning method (M2TFS) is used to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. However, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. In order to overcome this issue, label-aligned multi-task feature selection (LAMTFS) which can fully explore the realtionships across both modalities and subjects is proposed. Then a discriminative multi-task feature selection method is proposed to select the most discriminative features for multi-modality based classification. The experimental results on the baseline magnetic resonance image (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative (ADNI) data base demonstrate the effectiveness of those above proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.loni.ucla.edu/ADNI.

References

  1. Apostolova, L.G., Hwang, K.S., Andrawis, J.P., Green, A.E., Babakchanian, S., Morra, J.H., Cummings, J.L., Toga, A.W., Trojanowski, J.Q., Shaw, L.M., et al.: 3d pib and csf biomarker associations with hippocampal atrophy in adni subjects. Neurobiol. Aging 31(8), 1284–1303 (2010)

    Article  Google Scholar 

  2. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach. Learn. 73(3), 243–272 (2008)

    Article  Google Scholar 

  3. Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Arrighi, H.M.: Forecasting the global burden of alzheimers disease. Alzheimer’s dementia 3(3), 186–191 (2007)

    Google Scholar 

  4. Cai, D., He, X., Zhou, K., Han, J., Bao, H.: Locality sensitive discriminant analysis. In: IJCAI, pp. 708–713 (2007)

    Google Scholar 

  5. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

  6. Chincarini, A., Bosco, P., Calvini, P., Gemme, G., Esposito, M., Olivieri, C., Rei, L., Squarcia, S., Rodriguez, G., Bellotti, R., et al.: Local mri analysis approach in the diagnosis of early and prodromal alzheimer’s disease. NeuroImage 58(2), 469–480 (2011)

    Article  Google Scholar 

  7. Ckriet, G., Deng, M., Cristianini, N., NOBLE, W.: Rernel-based data fusion and its application to protein function prediction in yeast. Biocomputing 300 (2004)

    Google Scholar 

  8. Dai, Z., Yan, C., Wang, Z., Wang, J., Xia, M., Li, K., He, Y.: Discriminative analysis of early alzheimer’s disease using multi-modal imaging and multi-level characterization with multi-classifier (m3). Neuroimage 59(3), 2187–2195 (2012)

    Article  Google Scholar 

  9. Drzezga, A., Lautenschlager, N., Siebner, H., Riemenschneider, M., Willoch, F., Minoshima, S., Schwaiger, M., Kurz, A.: Cerebral metabolic changes accompanying conversion of mild cognitive impairment into alzheimer’s disease: a pet follow-up study. Eur. J. Nucl. Med. Mol. Imaging 30(8), 1104–1113 (2003)

    Article  Google Scholar 

  10. Fan, Y., Resnick, S.M., Wu, X., Davatzikos, C.: Structural and functional biomarkers of prodromal alzheimer’s disease: a high-dimensional pattern classification study. Neuroimage 41(2), 277–285 (2008)

    Article  Google Scholar 

  11. Foster, N.L., Heidebrink, J.L., Clark, C.M., Jagust, W.J., Arnold, S.E., Barbas, N.R., DeCarli, C.S., Turner, R.S., Koeppe, R.A., Higdon, R., et al.: Fdg-pet improves accuracy in distinguishing frontotemporal dementia and alzheimer’s disease. Brain 130(10), 2616–2635 (2007)

    Article  Google Scholar 

  12. Higdon, R., Foster, N.L., Koeppe, R.A., DeCarli, C.S., Jagust, W.J., Clark, C.M., Barbas, N.R., Arnold, S.E., Turner, R.S., Heidebrink, J.L., et al.: A comparison of classification methods for differentiating fronto-temporal dementia from alzheimer’s disease using fdg-pet imaging. Stat. Med. 23(2), 315–326 (2004)

    Article  Google Scholar 

  13. Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M.K., Johnson, S.C., Initiative, A.D.N., et al.: Spatially augmented lpboosting for ad classification with evaluations on the adni dataset. Neuroimage 48(1), 138–149 (2009)

    Article  Google Scholar 

  14. Hinrichs, C., Singh, V., Xu, G., Johnson, S.: Mkl for robust multi-modality ad classification. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2009, pp. 786–794. Springer (2009)

    Google Scholar 

  15. Huang, S., Li, J., Ye, J., Wu, T., Chen, K., Fleisher, A., Reiman, E.: Identifying alzheimer’s disease-related brain regions from multi-modality neuroimaging data using sparse composite linear discrimination analysis. In: Advances in Neural Information Processing Systems, pp. 1431–1439 (2011)

    Google Scholar 

  16. Jie, B., Zhang, D., Cheng, B., Shen, D.: Manifold regularized multitask feature learning for multimodality disease classification. Hum. Brain Mapp. 36(2), 489–507 (2015)

    Article  Google Scholar 

  17. Landau, S., Harvey, D., Madison, C., Reiman, E., Foster, N., Aisen, P., Petersen, R., Shaw, L., Trojanowski, J., Jack, C., et al.: Comparing predictors of conversion and decline in mild cognitive impairment. Neurology 75(3), 230–238 (2010)

    Article  Google Scholar 

  18. Liu, F., Wee, C.Y., Chen, H., Shen, D.: Inter-modality relationship constrained multi-modality multi-task feature selection for alzheimer’s disease and mild cognitive impairment identification. NeuroImage 84, 466–475 (2014)

    Article  Google Scholar 

  19. Liu, J., Ji, S., Ye, J., et al.: Slep: Sparse Learning with Efficient Projections, vol. 6, no. 491. Arizona State University (2009)

    Google Scholar 

  20. Obozinski, G., Taskar, B., Jordan, M.: Multi-task feature selection. Technical Report, Statistics Department, UC Berkeley (2006)

    Google Scholar 

  21. Obozinski, G., Taskar, B., Jordan, M.I.: Joint covariate selection and joint subspace selection for multiple classification problems. Stat. Comput. 20(2), 231–252 (2010)

    Article  MathSciNet  Google Scholar 

  22. Oliveira Jr, P.P.d.M., Nitrini, R., Busatto, G., Buchpiguel, C., Sato, J.R., Amaro Jr, E.: Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect alzheimer’s disease. J. Alzheimer’s Dis. 19(4), 1263–1272 (2010)

    Google Scholar 

  23. Orrù, G., Pettersson-Yeo, W., Marquand, A.F., Sartori, G., Mechelli, A.: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 36(4), 1140–1152 (2012)

    Article  Google Scholar 

  24. Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recogn. Lett. 15(11), 1119–1125 (1994)

    Article  Google Scholar 

  25. Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M.: Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13(5), 856–876 (2001)

    Article  Google Scholar 

  26. Shen, D., Davatzikos, C.: Hammer: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Med. Imaging 21(11), 1421–1439 (2002)

    Article  Google Scholar 

  27. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in mri data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)

    Article  Google Scholar 

  28. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  29. Sui, J., Adali, T., Yu, Q., Chen, J., Calhoun, V.D.: A review of multivariate methods for multimodal fusion of brain imaging data. J. Neurosci. Methods 204(1), 68–81 (2012)

    Article  Google Scholar 

  30. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser B (Methodological) 267–288 (1996)

    Google Scholar 

  31. Walhovd, K., Fjell, A., Dale, A., McEvoy, L., Brewer, J., Karow, D., Salmon, D., Fennema-Notestine, C., Initiative, A.D.N., et al.: Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiol. Aging 31(7), 1107–1121 (2010)

    Article  Google Scholar 

  32. Wang, Y., Fan, Y., Bhatt, P., Davatzikos, C.: High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables. Neuroimage 50(4), 1519–1535 (2010)

    Article  Google Scholar 

  33. Wang, Z., Chen, S., Sun, T.: Multik-mhks: a novel multiple kernel learning algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 348–353 (2008)

    Article  Google Scholar 

  34. Westman, E., Simmons, A., Zhang, Y., Muehlboeck, J.S., Tunnard, C., Liu, Y., Collins, L., Evans, A., Mecocci, P., Vellas, B., et al.: Multivariate analysis of mri data for alzheimer’s disease, mild cognitive impairment and healthy controls. Neuroimage 54(2), 1178–1187 (2011)

    Article  Google Scholar 

  35. Xue, H., Chen, S., Yang, Q.: Discriminatively regularized least-squares classification. Pattern Recogn. 42(1), 93–104 (2009)

    Article  MATH  Google Scholar 

  36. Ye, J., Wu, T., Li, J., Chen, K.: Machine learning approaches for the neuroimaging study of alzheimer’s disease. Computer 44(4), 99–101 (2011)

    Article  Google Scholar 

  37. Ye, T., Zu, C., Jie, B., Shen, D., Zhang, D., Initiative, A.D.N., et al.: Discriminative multi-task feature selection for multi-modality classification of alzheimers disease. Brain Imaging Behav. 1–11 (2015)

    Google Scholar 

  38. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Statistical Methodology) 68(1), 49–67 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, D., Shen, D., Initiative, A.D.N., et al.: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease. NeuroImage 59(2), 895–907 (2012)

    Article  Google Scholar 

  40. Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., Initiative, A.D.N., et al.: Multimodal classification of alzheimer’s disease and mild cognitive impairment. Neuroimage 55(3), 856–867 (2011)

    Article  Google Scholar 

  41. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

  42. Zu, C., Jie, B., Liu, M., Chen, S., Shen, D., Zhang, D., Initiative, A.D.N., et al.: Label-aligned multi-task feature learning for multimodal classification of alzheimers disease and mild cognitive impairment. Brain Imaging Behav. 1–12 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoqiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, D., Zu, C., Jie, B., Ye, T. (2018). Multi-modality Feature Learning in Diagnoses of Alzheimer’s Disease. In: Suzuki, K., Chen, Y. (eds) Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging. Intelligent Systems Reference Library, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-68843-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68843-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68842-8

  • Online ISBN: 978-3-319-68843-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics