Fabrication of Optical Components by Ultraprecision Finishing Processes

  • Gourhari Ghosh
  • Ajay SidparaEmail author
  • P. P. Bandyopadhyay
Part of the Engineering Materials book series (ENG.MAT.)


The demand of ultraprecision optical components is increasing extensively with the rapid development of the modern optics. The optical components used in X-ray microscopy and extreme ultraviolet lithography (EUVL) demand surface roughness of about 0.1 nm rms, a figure accuracy about 1 nm peak-to-valley (p–v) and no induced subsurface crystallographic damage. Furthermore, an aspherical surface is gaining more interest over the past few years for its favourable properties, and many new optical materials are also being developed. Fabrication of ultraprecision optical components became a great challenge to the optical fabrication industry. Aspheric optical components are generally fabricated by shaping methods followed by precision finishing processes. Near net shape of the component can be accomplished by the shaping methods (e.g. single-point diamond turning, deterministic micro-grinding, etc.). The application of optical components fabricated by this method is limited to the infrared (IR) optics owing to the presence of high-spatial-frequency surface irregularities which lead to the possibility of scattering for shorter wavelength applications. Desired surface finish, figure accuracy and surface integrity can be attained by precision finishing techniques to make it suitable for shorter wavelength applications. In the recent years, ion beam figuring, elastic emission machining, nanoparticle colloid jet machining and magnetorheological finishing are extensively used for fabrication of ultraprecision optics. In this chapter, principle mechanism of material removal and applicability of aforementioned ultraprecision finishing processes to different materials are discussed.


Optical fabrication Figure accuracy Surface roughness Subsurface damage Ultraprecision finishing 



The funding support from IIT Kharagpur under ISIRD grant and Board of Research in Nuclear Sciences (BRNS), Bombay is acknowledged.


  1. 1.
    Peng W, Guan C, Li S (2013) Ultrasmooth surface polishing based on the hydrodynamic effect. Appl Opt 52(25):6411–6416Google Scholar
  2. 2.
    Zhang SJ, To S, Zhu ZW, Zhang GQ (2015) A review of surface roughness generation in ultra-precision machining. Int J Mach Tools Manuf 91:76–95CrossRefGoogle Scholar
  3. 3.
    Li Y, Wu Y, Wang J, Yang W, Guo Y, Xu Q (2012) Tentative investigation towards precision polishing of optical components with ultrasonically vibrating bound-abrasive pellets. Opt Express 20:568–575CrossRefGoogle Scholar
  4. 4.
    Dinger U, Seitz G, Schulte S, Eisert F, Muenster C, Burkart S, Stacklies S, Bustaus C, Hoefer H, Mayer M, Fellner B (2004) Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography. In: Optical science and technology, SPIE’s 48th annual meeting. International Society for Optics and Photonics, pp 18–28Google Scholar
  5. 5.
    Schindler A, Haensel T, Nickel A, Thomas HJ, Lammert H, Siewert F (2004) Finishing procedure for high-performance synchrotron optics. In: Optical science and technology, SPIE’s 48th annual meeting. International Society for Optics and Photonics, pp 64–72Google Scholar
  6. 6.
    Faehnle OW, Brug HH (1999) Novel approaches to generate aspherical optical surfaces. Optical manufacturing and testing III. Proc SPIE 3782: 170–180Google Scholar
  7. 7.
    Shi F, Shu Y, Dai Y, Peng X, Li S (2013) Magnetorheological elastic super-smooth finishing for high-efficiency manufacturing of ultraviolet laser resistant optics. Opt Eng 52: 075104-075104Google Scholar
  8. 8.
    Sanger GM (1987) The precision machining of optics. In: Shannon RR, Wyant JC (eds) Applied optics and optical engineering. Academic Press, CambridgeGoogle Scholar
  9. 9.
    Dumas P, Golini D, Tricard M (2005) Improvement of figure and finish of diamond turned surfaces with magneto-rheological finishing (MRF). Proc SPIE 5786:296–304CrossRefGoogle Scholar
  10. 10.
  11. 11.
  12. 12.
    Kanaoka M, Liu C, Nomura K, Ando M, Takino H, Fukuda Y (2007) Figuring and smoothing capabilities of elastic emission machining for low-thermal-expansion glass optics. J Vac Sci Technol, B 25:2110–2113CrossRefGoogle Scholar
  13. 13.
    Khounsary A, Fernandez P, Assoufid L, Mills D, Walters D, Schwartz J, Robichaud J (2002) Design, fabrication, and evaluation of an internally cooled silicon carbide mirror. Rev Sci Instrum 73(3):1537–1540CrossRefGoogle Scholar
  14. 14.
  15. 15.
  16. 16.
  17. 17.
    Zimmerman J (1990) Computer-controlled optical surfacing for off-axis aspheric mirrors. In: Astronomy’90, Tucson AZ, 11–16 Feb 90 1990 Jul 1, International Society for Optics and Photonics, pp 663–668Google Scholar
  18. 18.
    Pollicove H, Golini D (2002) Computer numerically controlled optics fabrication. In: Guenther AH (ed) SPIE PM119: International trends in applied opticsGoogle Scholar
  19. 19.
    Mori Y, Yamamura K, Endo K, Yamauchi K, Yasutake K, Gotob H, Kakiuchi H, Sano Y, Mimur H (2005) Creation of perfect surfaces. J Cryst Growth 275:39–50CrossRefGoogle Scholar
  20. 20.
    Baker PC, Brown NJ (1978) Polishing single-point diamond-turned metal reflective optics. Opt Eng 17:595–601CrossRefGoogle Scholar
  21. 21.
    Brehm R, van Dun K, Teunissen JCG, Haisma J (1979) Transparent single-point turning of optical glass. 1(4): 207–213Google Scholar
  22. 22.
    Lambropoulos JC, Fang T, Funkenbusch PD, Jacobs SD, Cumbo MJ, Golini D (1996) Surface microroughness of optical glasses under deterministic microgrinding. Appl Opt 35:4448–4462CrossRefGoogle Scholar
  23. 23.
    Lee ES, Baek SY (2007) A study on optimum grinding factors for aspheric convex surface micro-lens using design of experiments. Int J Mach Tools Manuf 47:509–520CrossRefGoogle Scholar
  24. 24.
    Golini D, Kordonski WI, Dumas P, Hogan S (1999) Magnetorheological finishing (MRF) in commercial precision optics manufacturing. Proc SPIE 3782:80–91CrossRefGoogle Scholar
  25. 25.
    Gailly P, Collette JP, Renson LF, Tock JP (1999) Ion beam figuring of small BK7 and Zerodur optics: thermal effects. Proc SPIE 3739:124–131CrossRefGoogle Scholar
  26. 26.
    Demmler M, Zeuner M, Allenstein F, Dunger T, Nestler M, Kiontke S (2010) Ion beam figuring (IBF) for high precision optics. Proc SPIE 7591:75910YCrossRefGoogle Scholar
  27. 27.
    Zhou L, Audurier V, Pirouz P, Powell JA (1994) Chemomechanical polishing of silicon carbide. J Electron Soc 144:L161–L163CrossRefGoogle Scholar
  28. 28.
    Aida H, Doi T, Takeda H, Katakura H, Kim SW, Koyama K, Yamazaki T, Uneda M (2011) Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials. Curr Appl Phys 12:S41–S46CrossRefGoogle Scholar
  29. 29.
    Mori Y, Yamauchi Y, Yamamura K, Mimura H, Saito A, Kishimoto H, Sekito Y, Kanaoka M, Souvorov A, Yabashi M, Tamasaku K, Ishikawa T (2001) Development of plasma chemical vaporization machining and elastic emission machining systems for coherent x-ray optics. Proc SPIE 4501Google Scholar
  30. 30.
    Su YT, Wang SY, Chao PY, Hwang YD, Hsiau JS (1995) Investigation of elastic emission machining process: lubrication effects. Precis Eng 17(3):164–172CrossRefGoogle Scholar
  31. 31.
    Kim JD (2002) Motion analysis of powder particles in EEM using cylindrical polyurethane wheel. Int J Mach Tools Manuf 42(1):21–28CrossRefGoogle Scholar
  32. 32.
    Song XZ, Zhang Y, Zhang FH (2012) Ultra-precision shaping and ultra-smooth polishing investigation of high-purity quartz glass in nanoparticle colloid jet machining. Adv Mater Res 426:396–399CrossRefGoogle Scholar
  33. 33.
    Xie DG, Gao B, Yao YX, Yuan ZJ (2006) Study of local material removal model of bonnet tool polishing. Key Eng Mater 304–305:335–339CrossRefGoogle Scholar
  34. 34.
    Beaucamp A, Namba Y (2013) Super-smooth finishing of diamond turned hard X-ray molding dies by combined fluid jet and bonnet polishing. CIRP Ann Manuf Technol 62:315–318CrossRefGoogle Scholar
  35. 35.
    Shorey AB, Kordonski W, Tricard M (2004) Magnetorheological finishing of large and lightweight optics. Proc SPIE 5533:99–107CrossRefGoogle Scholar
  36. 36.
    Sidpara A, Jain VK (2012) Nano–level finishing of single crystal silicon blank using magnetorheological finishing process. Tribol Int 47:159–166CrossRefGoogle Scholar
  37. 37.
    Tuell MT, Burge JH, Anderson B (2002) Aspheric optics: smoothing the ripples with semi-flexible tools. Opt Eng 41(7):1473–1474CrossRefGoogle Scholar
  38. 38.
    Balasubramaniam R, Suri VK (2010) Diamond turn machining. In: Jain VK (ed) Introduction to micromachining. Narosa publishing, pp 3.1–3.29Google Scholar
  39. 39.
    Saito TT (1976) Diamond turning of optics. Opt Eng 15(5):431–434CrossRefGoogle Scholar
  40. 40.
    Nakasuji T, Kodera S, Hara S, Ikawa N (1990) Diamond turning of brittle materials for optical components. CIRP Ann Manuf Technol 39:89–92CrossRefGoogle Scholar
  41. 41.
    Rhorer RL, Evans CJ (2010) Fabrication of optics by diamond turning. Handbook of Optics. Mcgraw Hill, New YorkGoogle Scholar
  42. 42.
    Wang C, Fang Q, Chen J, Liu Y, Jin T (2016) Subsurface damage in high-speed grinding of brittle materials considering kinematic characteristics of the grinding process. Int J Adv Manuf Technol 83:937–948CrossRefGoogle Scholar
  43. 43.
    Wang H, Chen H, Fu G, Xiao H (2016) Relationship between grinding process and the parameters of subsurface damage based on the image processing. Int J Adv Manuf Technol 83:1707–1715CrossRefGoogle Scholar
  44. 44.
    Namba Y, Yoshida K, Yoshida H, Nakai S (1997) Ultraprecision grinding of optical materials for high-power lasers. Laser-induced damage in optical materials. Proc SPIE 3244:320–330CrossRefGoogle Scholar
  45. 45.
    Scattergood RO, Blake N (1990) Ductile-regime machining of germanium and silicon. J Am Ceram Soc 73(4):949–957CrossRefGoogle Scholar
  46. 46.
    Fang FZ, Liu XD, Lee LC (2003) Micro-machining of optical glasses—a review of diamond cutting glasses. Sadhana 28(5):945–955CrossRefGoogle Scholar
  47. 47.
    Ikawa N, Donaldson RR, Komanduri R, Konig W, Aachen TH, McKeown PA, Moriwaki T, Stowers IF (1991) Ultraprecision metal cutting—the past, the present, the future. Ann CIRP 40(2):587–594CrossRefGoogle Scholar
  48. 48.
    Brinksmeier E, Mutlugünes Y, Klocke F, Aurich JC, Shore P, Ohmori H (2010) Ultra-precision grinding. CIRP Ann Manuf Technol 59(2):652–671CrossRefGoogle Scholar
  49. 49.
    Pollicove HM, Moore DT (1992) COM: working to move the optics industry into the 21st century. Photonics Spectra 26(5):127–134Google Scholar
  50. 50.
    Namba Y, Wada R, Unno K, Tsuboi A (1989) Ultra-precision surface grinder having a glass-ceramics spindle of zero-thermal expansion. Ann CIRP 38(1):331–334CrossRefGoogle Scholar
  51. 51.
    Ahearne E, Byrne G (2004) Ultraprecision grinding technologies in silicon semiconductor processing. Proc Inst Mech Eng Part B J Eng Manuf 218:253–267CrossRefGoogle Scholar
  52. 52.
    Tong S, Gracewski SM, Funkenbusch PD (2006) Measurement of the Preston coefficient of resin and bronze bond tools for deterministic microgrinding of glass. Precis Eng 30:115–122CrossRefGoogle Scholar
  53. 53.
    Brinksmeier E, Preuss W (2012) Micro-machining. Phil Trans R Soc A 370:3973–3992CrossRefGoogle Scholar
  54. 54.
    Zhao Q, Guo B (2015) Ultra-precision grinding of optical glasses using mono-layer nickel electroplated coarse-grained diamond wheels. Part 2: ELID assisted precision conditioning of grinding wheels. Precis Eng 39:67–78CrossRefGoogle Scholar
  55. 55.
    Klocke F (2009) Manufacturing processes, 2nd edn. Springer, HeidelbergCrossRefzbMATHGoogle Scholar
  56. 56.
    Jackson MJ, Davim JP (2011) Machining with abrasives. Springer, New York, pp 303–343Google Scholar
  57. 57.
    Joshi SS (2012) Ultraprecision Machining (UPM). In: Encyclopedia of nanotechnology. Springer, Netherlands, pp 2789–2795Google Scholar
  58. 58.
    Huo FW, Guo DM, Kang RK, Guang FE (2012) Nanogrinding of SiC wafers with high flatness and low subsurface damage. Trans Nonferrous Met Soc China 22(12):3027–3033CrossRefGoogle Scholar
  59. 59.
    Gatzen HH, Maetzig JC (1997) Nanogrinding. Precis Eng 21(2–3):134–139CrossRefGoogle Scholar
  60. 60.
    Lim HS, Fathima K, Kumar AS, Rahman M (2002) A fundamental study on the mechanism of electrolytic in-process dressing (ELID) grinding. Int J Mach Tools Manuf 42(8):935–943CrossRefGoogle Scholar
  61. 61.
    Namba Y, Abe M, Kobayashi A (1993) Ultraprecision grinding of optical glasses to produce super-smooth surfaces. CIRP Ann Manuf Technol 42:417–420CrossRefGoogle Scholar
  62. 62.
    Bifano T, Yi Y, Kahl K (1994) Fixed abrasive grinding of CVD SiC mirrors. Precis Eng 16:109–116CrossRefGoogle Scholar
  63. 63.
    Namba Y (1996) Ultra-precision grinding of chemically vapor deposited silicon carbide mirrors for synchrotron radiation. Proc SPIE—Int Soc Opt Eng 2856 BT:323–330Google Scholar
  64. 64.
    Burns SJ, Funkenbusch PD, Gracewski SM, Lambropoulos JC, Ruckman J (2001) Surface features and residual strains in AlON grinding. Proc SPIE 4451:165–173CrossRefGoogle Scholar
  65. 65.
    Yin L, Vancoille EYJ, Lee LC, Huang H, Ramesh K, Liu XD (2004) High-quality grinding of polycrystalline silicon carbide spherical surfaces. Wear 256:197–207CrossRefGoogle Scholar
  66. 66.
    Yang LX, Wang JXQ, Zhou GZ (2006) Research on deterministic precision grinding on large-scale K9 optics. In: 2nd International symposium on advanced optical manufacturing and testing technologies. International Society for Optics and Photonics, 61492G-61492GGoogle Scholar
  67. 67.
    Namba Y, Yoshida T, Yoshida S, Yoshida K (2007) Surfaces of calcium fluoride single crystals ground with an ultra-precision surface grinder. CIRP Ann Manuf Technol 54:503–506CrossRefGoogle Scholar
  68. 68.
    Yin L, Huang H (2008) Brittle materials in nano-abrasive fabrication of optical mirror-surfaces. Precis Eng 32:336–341CrossRefGoogle Scholar
  69. 69.
    Yao Z, Gu W, Li K (2012) Relationship between surface roughness and subsurface crack depth during grinding of optical glass BK7. J Mater Process Technol 212:969–976CrossRefGoogle Scholar
  70. 70.
    Huo F, Zhao H, Zhao D (2011) Nanogrinding of silicon wafer using a novel vitrified diamond wheel. Mater Manuf Process 26:977–981CrossRefGoogle Scholar
  71. 71.
    Zhang Z, Huo F, Wu Y, Huang H (2011) Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material. Int J Mach Tools Manuf 51(1):18–24CrossRefGoogle Scholar
  72. 72.
    Dai Y, Liao W, Zhou L, Chen S, Xie X (2010) Ion beam figuring of high-slope surfaces based on figure error compensation algorithm. Appl Opt 49(34):6630–6636CrossRefGoogle Scholar
  73. 73.
    Egert CM (1992) Roughness evolution of optical materials induced by ion-beam milling. In: San Diego’92. International Society for Optics and Photonics, pp 63–72Google Scholar
  74. 74.
    Arnold T, Böhm G, Fechner R, Meister J, Nickel A, Frost F, Hänsel T, Schindler A (2010) Ultra-precision surface finishing by ion beam and plasma jet techniques—status and outlook. Nucl Instrum Methods Phys Res Sect A 616(2): 147–156Google Scholar
  75. 75.
    Xie X, Li S (2015) Ion beam figuring technology. Handbook of manufacturing engineering and technology. Springer, London, pp 1343–1390Google Scholar
  76. 76.
    Allen LN (1995) Progress in ion figuring large optics. In: Laser-induced damage in optical materials. International Society for Optics and Photonics, pp 237–247Google Scholar
  77. 77.
    Meinel AB, Bushkin S, Loomis DA (1965) Controlled figuring of optical surfaces by energetic ionic beams. Appl Opt 4:1674CrossRefGoogle Scholar
  78. 78.
    Kaufman HR, Reader PD, Isaacson GC (1977) Ion sources for ion machining applications. AIAA J 15(6):843–847CrossRefGoogle Scholar
  79. 79.
    Gale AJ (1978) Ion machining of optical components. In: Optical society of America annual meeting conference proceedingsGoogle Scholar
  80. 80.
    Wilson SR, McNeil JR (1987) Neutral ion beam figuring of large optical surface. Proc SPIE 818:320–324CrossRefGoogle Scholar
  81. 81.
    Sigmund P (1973) A mechanism of surface micro-roughening by ion bombardment. J Mater Sci 8:1545–1553CrossRefGoogle Scholar
  82. 82.
    Zeuner M, Kiontke S (2012) Ion beam figuring technology in optics manufacturing. Optik & Photonik 7(2):56–58CrossRefGoogle Scholar
  83. 83.
    Gailly P, Fleury-Frenette K, Lecat JH, Collette JP, Defise JM (2008) Ion beam figuring for precision optics. SPIE Newsroom ID x2364Google Scholar
  84. 84.
    Wilson SR, Reicher DW, McNeil JR (1989) Surface figuring using neutral ion beams. In: 32nd annual technical symposium. International Society for Optics and Photonics, pp 74–81Google Scholar
  85. 85.
    Allen LN, Keim RE, Lewis TS, Ullom JR (1992) Surface error correction of a Keck 10-m telescope primary mirror segment by ion figuring. In: 8th International symposium on gas flow and chemical lasers. International Society for Optics and Photonics, pp 195–204Google Scholar
  86. 86.
    Drueding TW, Fawcett SC, Wilson SR, Bifano TG (1995) Ion beam figuring of small optical components. Opt Eng 34(12):3565–3571CrossRefGoogle Scholar
  87. 87.
    Flamm D, Schindler A, Berger M (2003) Ion beam milling of optically polished CaF2 surfaces. Proc SPIE 5180:81–88CrossRefGoogle Scholar
  88. 88.
    Gailly P, Collette JP, Jamar C, Fleury-Frenette K, Médart P, Stockman Y (2004) Roughness evolution of some X-UV reflective materials induced by low energy (< 1 keV) ion beam milling. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 216:206–212CrossRefGoogle Scholar
  89. 89.
    Weiser M (2009) Ion beam figuring for lithography optics. Nucl Instr Methods Phys Res Sect B Beam Interact Mater Atoms 267(8):1390–1393CrossRefGoogle Scholar
  90. 90.
    Demmler M, Zeuner M, Luca A, Dunger T, Rost D, Kiontke S, Krüger M (2011) Ion beam figuring of silicon aspheres. In: SPIE OPTO. International Society for Optics and Photonics, pp 793416–793421Google Scholar
  91. 91.
    Zhang FH, Song XZ, Zhang Y, Luan DR (2009) Polishing of ultra smooth surface with nanoparticle colloid jet. Key Eng Mater 404:143–148 (Trans Tech Publications)CrossRefGoogle Scholar
  92. 92.
    Song XZ, Zhang Y, Zhang FH (2011) Ultra-precision shaping and polishing experiments in nanoparticle colloid jet machining. Adv Mater Res 291:1759–1763 (Trans Tech Publications)CrossRefGoogle Scholar
  93. 93.
    Zhang F, Song X, Zhang Y, Luan D (2009) Figuring of an ultra-smooth surface in nanoparticle colloid jet machining. J Micromech Microeng 19(5):054009CrossRefGoogle Scholar
  94. 94.
    Song XZ, Zhang Y, Zhang FH (2008) Study on removal mechanism of nanoparticle colloid jet machining. Adv Mater Res 53:363–368 (Trans Tech Publications)CrossRefGoogle Scholar
  95. 95.
    Ranjbar Z, Rastegar S (2009) The influence of surface chemistry of nano-silica on microstructure, optical and mechanical properties of the nano-silica containing clear-coats. Prog Org Coat 65(1):125–130CrossRefGoogle Scholar
  96. 96.
    Peng W, Li S, Guan C, Shen X, Dai Y, Wang Z (2013) Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing. Opt Eng 52(4):043401CrossRefGoogle Scholar
  97. 97.
    Harrison WA (1980) Electronic structure and the properties of solids. W.H. Freeman and CompanyGoogle Scholar
  98. 98.
    Song X, Zhang Y, Zhang F, Luan D (2009) Experimental investigation on polishing of ultrasmooth surface in nanoparticle colloid jet machining. In: 4th International symposium on advanced optical manufacturing and testing technologies: advanced optical manufacturing technologies. International Society for Optics and Photonics, 72820E-72820EGoogle Scholar
  99. 99.
    Takei Y, Mimura H (2013) Effect of focusing flow on stationary spot machining properties in elastic emission machining. Nanoscale Res Lett 8(1):237–242CrossRefGoogle Scholar
  100. 100.
    Sidpara A (2017) Elastic emission machining. Nanofinishing science and technology: basic and advanced finishing and polishing processes. CRC Press, Boca Raton, pp 111–132Google Scholar
  101. 101.
    Mori Y, Yamauchi K, Endo K (1987) Elastic emission machining. Precis Eng 9(3):123–128CrossRefGoogle Scholar
  102. 102.
    Mori Y, Yamauchi K, Endo K (1988) Mechanism of atomic removal in elastic emission machining. Precis Eng 10(1): 24–28Google Scholar
  103. 103.
    Yamauchi K, Mimura H, Inagaki K, Mori Y (2002) Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining. Rev Sci Instrum 73(11):4028–4033CrossRefGoogle Scholar
  104. 104.
    Kanaoka M, Takino H, Nomura K, Mimura H, Yamauchi K, Mori Y (2008) Factors affecting changes in removal rate of elastic emission machining. In: Proceedings of ASPE 2008 annual meeting and the twelfth ICPE. Portland, Oregon, pp 615–618Google Scholar
  105. 105.
    Inagaki K, Yamauchi K, Mimura H, Sugiyama K, Hirose K, Mori Y (2001) First-principles evaluations of machinability dependency on powder material in elastic emission machining. Mater Trans 42(11):2290–2294CrossRefGoogle Scholar
  106. 106.
    Yamauchi K, Hirose K, Goto H, Sugiyama K, Inagaki K, Yamamura K, Sano Y, Mori Y (1999) First-principles simulations of removal process in EEM (elastic emission machining). Comput Mater Sci 14(1):232–235CrossRefGoogle Scholar
  107. 107.
    Arima K, Kubota A, Mimura H, Inagaki K, Endo K, Mori Y, Yamauchi K (2006) Highly resolved scanning tunneling microscopy study of Si (001) surfaces flattened in aqueous environment. Surf Sci 600(15):185–188CrossRefGoogle Scholar
  108. 108.
    Kubota A, Mimura H, Inagaki K, Mori Y, Yamauchi K (2006) Effect of particle morphology on removal rate and surface topography in elastic emission machining. J Electrochem Soc 153(9):G874–G878CrossRefGoogle Scholar
  109. 109.
    Kubota A, Mimura H, Inagaki K, Arima K, Mori Y, Yamauchi K (2005) Preparation of ultrasmooth and defect-free 4H-SiC (0001) surfaces by elastic emission machining. J Electron Mater 34(4):439–443CrossRefGoogle Scholar
  110. 110.
    Kubota A, Shinbayashi Y, Mimura H, Sano Y, Inagaki K, Mori Y, Yamauchi K (2007) Investigation of the surface removal process of silicon carbide in elastic emission machining. J Electron Mater 36(1):92–97CrossRefGoogle Scholar
  111. 111.
    Jacobs SD, Arrasmith S (1999) Overview of magnetorheological finishing (MRF) for precision optics manufacturing. Ceram Trans 102:185–199Google Scholar
  112. 112.
    Tricard M, Dumas PR, Golini D (2004) New industrial applications of magnetorheological finishing (MRF). In: Optical fabrication and testing. Optical Society of AmericaGoogle Scholar
  113. 113.
  114. 114.
    Arrasmith SR, Kozhinova IA, Gregg LL, Shorey AB, Romanofsky HJ, Jacobs SD, Golini D, Kordonski WI, Hogan SJ, Dumas P (1999) Details of the polishing spot in magnetorheological finishing (MRF). Proc SPIE, 3782, Optical Manufacturing and Testing IIIGoogle Scholar
  115. 115.
    Sidpara A, Jain VK (2011) Experimental investigations into forces during magnetorheological fluid based finishing process. Int J Mach Tools Manuf 51:358–362CrossRefGoogle Scholar
  116. 116.
    Schinhaerl M, Smith G, Geiss A, Smith L, Rascher R, Sperber P, Pitschke E, Stamp R (2007) Calculation of MRF influence functions. In: Optical Engineering + Applications, International Society for Optics and Photonics, 66710YGoogle Scholar
  117. 117.
    Sidpara A, Jain VK (2017) Magnetorheological finishing. In: Jain VK (ed) Nanofinishing science and technology: basic and advanced finishing and polishing process. CRC Press, USAGoogle Scholar
  118. 118.
    Jacobs SD, Kordonski W, Prokhorov IV, Golini D, Gorodkin GR, Strafford DT (1998) Magnetorheological fluid composition. U.S. Patent 5,804,095Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Gourhari Ghosh
    • 1
  • Ajay Sidpara
    • 1
    Email author
  • P. P. Bandyopadhyay
    • 1
  1. 1.Mechanical Engineering DepartmentIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations