A Closed-Loop Gait for Humanoid Robots Combining LIPM with Parameter Optimization

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9776)

Abstract

Even with the recent advances in the area of dynamic walking on humanoid robots there is still a significant amount of manual calibration required in practice due to the variances in the hardware. That is in order to achieve the performance needed in environments such as RoboCup. We present a LIPM-based closed-loop walk, that adapts to differences in the physical behavior of the robot by optimizing parameters of the model directly on the NAO while walking and executing other tasks. A significant amount of errors in the model predictions can be reduced without using a more complex model simply by adjusting the LIPM to fit the observed behavior. Our experiments show that the optimized model yields a more controlled, faster and even more energy-efficient walk on different NAO robots and on various surfaces without additional manual parameter tuning.

References

  1. 1.
    Aftab, Z., Robert, T., Wieber, P.B.: Ankle, hip and stepping strategies for humanoid balance recovery with a single model predictive control scheme. In: Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2012)Google Scholar
  2. 2.
    Chernova, S., Veloso, M.: An evolutionary approach to gait learning for four-legged robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2562–2567. IEEE (2004)Google Scholar
  3. 3.
    Dallali, H., Kormushev, P., Li, Z., Caldwell, D.: On global optimization of walking gaits for the compliant humanoid robot, COMAN using reinforcement learning. J. Cybern. IT 12(3), 39–52 (2012)Google Scholar
  4. 4.
    Faber, F., Behnke, S.: Stochastic optimization of bipedal walking using gyro feedback and phase resetting. In: 7th IEEE-RAS International Conference on Humanoid Robots, pp. 203–209. IEEE (2007)Google Scholar
  5. 5.
    Gökçe, B., Akin, H.L.: Parameter optimization of a signal-based omni-directional biped locomotion using evolutionary strategies. In: Ruiz-del-Solar, J., Chown, E., Plöger, P.G. (eds.) RoboCup 2010. LNCS, vol. 6556, pp. 362–373. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20217-9_31CrossRefGoogle Scholar
  6. 6.
    Graf, C., Röfer, T.: A center of mass observing 3D-LIPM gait for the RoboCup standard platform league humanoid. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS (LNAI), vol. 7416, pp. 102–113. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32060-6_9CrossRefGoogle Scholar
  7. 7.
    Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)CrossRefGoogle Scholar
  8. 8.
    Hebbel, M., Kosse, R., Nistico, W.: Modeling and learning walking gaits of biped robots. In: Proceedings of the Workshop on Humanoid Soccer Robots of the IEEE-RAS International Conference on Humanoid Robots, pp. 40–48 (2006)Google Scholar
  9. 9.
    Huang, W., Chew, C.M., Zheng, Y., Hong, G.S.: Pattern generation for bipedal walking on slopes and stairs. In: 8th IEEE-RAS International Conference on Humanoid Robots, pp. 205–210. IEEE (2008)Google Scholar
  10. 10.
    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp. 1620–1626 (2003)Google Scholar
  11. 11.
    Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 239–246 (2001)Google Scholar
  12. 12.
    Kulk, J., Welsh, J.S.: Evaluation of walk optimisation techniques for the NAO robot. In: 11th IEEE-RAS International Conference on Humanoid Robots, pp. 306–311. IEEE (2011)Google Scholar
  13. 13.
    Liu, C., Chen, Q.: Methods synthesis of central pattern generator inspired biped walking control. In: Deng, Z., Li, H. (eds.) Proceedings of the 2015 Chinese Intelligent Automation Conference. LNEE, vol. 338, pp. 371–379. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46466-3_37CrossRefGoogle Scholar
  14. 14.
    Liu, J., Urbann, O.: Bipedal walking with dynamic balance that involves three-dimensional upper body motion. Robot. Auton. Syst. 77, 39–54 (2016)CrossRefGoogle Scholar
  15. 15.
    MacAlpine, P., Barrett, S., Urieli, D., Vu, V., Stone, P.: Design and optimization of an omnidirectional humanoid walk: a winning approach at the RoboCup. In: 2011 3D Simulation Competition. In: AAAI (2012)Google Scholar
  16. 16.
    Missura, M., Behnke, S.: Lateral capture steps for bipedal walking. In: 11th IEEE-RAS International Conference on Humanoid Robots, pp. 401–408. IEEE (2011)Google Scholar
  17. 17.
    Missura, M., Behnke, S.: Omnidirectional capture steps for bipedal walking. In: Proceedings of IEEE International Conference on Humanoid Robots (Humanoids) (2013)Google Scholar
  18. 18.
    Missura, M., Behnke, S.: Balanced walking with capture steps. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI), vol. 8992, pp. 3–15. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18615-3_1CrossRefGoogle Scholar
  19. 19.
    Niehaus, C., Röfer, T., Laue, T.: Gait optimization on a humanoid robot using particle swarm optimization. In: Zhou, P., Menegatti, B. (eds.) Proceedings of the Second WS on Humanoid Soccer Robots in Conjunction with the 2007 IEEE-RAS International Conference on Humanoid Robots (2007)Google Scholar
  20. 20.
    Ott, C., Roa, M., Hirzinger, G.: Posture and balance control for biped robots based on contact force optimization. In: 11th IEEE-RAS International Conference on Humanoid Robots, pp. 26–33 (2011)Google Scholar
  21. 21.
    Rokbani, N., Benbousaada, E., Ammar, B., Alimi, A.M.: Biped robot control using particle swarm optimization. In: IEEE International Conference on Systems Man and Cybernetics (SMC), pp. 506–512. IEEE (2010)Google Scholar
  22. 22.
    Shafii, N., Lau, N., Reis, L.P.: Learning to walk fast: optimized hip height movement for simulated and real humanoid robots. J. Intell. Robot. Syst. 80, 1–17 (2015).  https://doi.org/10.1007/s10846-015-0191-5CrossRefGoogle Scholar
  23. 23.
    Strom, J., Slavov, G., Chown, E.: Omnidirectional walking using ZMP and preview control for the NAO humanoid robot. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS (LNAI), vol. 5949, pp. 378–389. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11876-0_33CrossRefGoogle Scholar
  24. 24.
    Torres, E., Garrido, L.: Automated generation of CPG-based locomotion for robot nao. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS (LNAI), vol. 7416, pp. 461–471. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32060-6_39CrossRefGoogle Scholar
  25. 25.
    Urbann, O., Hofmann, M.: Modification of foot placement for balancing using a preview controller based humanoid walking algorithm. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 420–431. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44468-9_37CrossRefGoogle Scholar
  26. 26.
    Wieber, P.B.: Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In: 6th IEEE-RAS International Conference on Humanoid Robots, pp. 137–142 (2006)Google Scholar
  27. 27.
    Wu, S., Pan, G., Yu, L.: Dynamic walking gait designing for biped robot based on particle swarm optimization. In: International Conference on Control Engineering and Communication Technology (ICCECT), pp. 372–377 (2012)Google Scholar
  28. 28.
    Yi, S.J., Zhang, B.T., Hong, D., Lee, D.: Active stabilization of a humanoid robot for impact motions with unknown reaction forces. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4034–4039 (2012)Google Scholar
  29. 29.
    Zhang, Q., Tang, T., Zhang, D., Yang, S., Shao, Y.: Optimized central pattern generator network for NAO humanoid walking control. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1486–1490. IEEE (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of MiamiCoral GablesUSA

Personalised recommendations