Advertisement

Boundedness Approach to Gait Planning for the Flexible Linear Inverted Pendulum Model

  • Leonardo Lanari
  • Oliver Urbann
  • Seth Hutchinson
  • Ingmar Schwarz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9776)

Abstract

In this paper, we solve the gait planning problem by using the Flexible LIP model, which has been shown to be more realistic w.r.t. the LIP for cost-effective or compliant biped robots for gait generation. We extend a stable inversion approach to obtain bounded Center of Mass (CoM) reference trajectories and show several advantages compared to preview control: avoidance of numerical integration, lower computation time, exact tracking of reference Zero Moment Point (ZMP) trajectories, and the ability to come to an immediate stop.

Keywords

Boundedness Stable inversion Preview control LIPM 

Notes

Acknowledgements

This work is partially supported by the EU H2020 RIA project COMANOID.

References

  1. 1.
    Buschmann, T., Lohmeier, S., Bachmayer, M., Ulbrich, H., Pfeiffer, F.: A collocation method for real-time walking pattern generation. In: 2007 7th IEEE-RAS International Conference on Humanoid Robots, pp. 1–6, November 2007Google Scholar
  2. 2.
    Czarnetzki, S., Kerner, S., Urbann, O.: Applying dynamic walking control for biped robots. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 69–80. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11876-0_7CrossRefGoogle Scholar
  3. 3.
    Czarnetzki, S., Kerner, S., Urbann, O.: Observer-based dynamic walking control for biped robots. Robot. Auton. Syst. 57(8), 839–845 (2009)CrossRefGoogle Scholar
  4. 4.
    Dau, H., Chew, C.M., Poo, A.N.: Proposal of augmented linear inverted pendulum model for bipedal gait planning. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 172–177 (2010)Google Scholar
  5. 5.
    Diedam, H., Dimitrov, D., Wieber, P.B., Mombaur, K., Diehl, M.: Online walking gait generation with adaptive foot positioning through linear Model Predictive control, vol. 24, pp. 1121–1126. IEEE (2008)Google Scholar
  6. 6.
    Englsberger, J., Ott, C., Roa, M., Albu-Schaffer, A., Hirzinger, G.: Bipedal walking control based on capture point dynamics. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4420–4427, September 2011Google Scholar
  7. 7.
    Englsberger, J., Werner, A., Ott, C., Henze, B., Roa, M.A., Garofalo, G., Burger, R., Beyer, A., Eiberger, O., Schmid, K., Albu-Schäffer, A.: Overview of the torque-controlled humanoid robot TORO. In: 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 916–923, November 2014Google Scholar
  8. 8.
    Hopkins, M.A., Hong, D.W., Leonessa, A.: Humanoid locomotion on uneven terrain using the time-varying divergent component of motion. In: 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 266–272, November 2014Google Scholar
  9. 9.
    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1620–1626 (2003)Google Scholar
  10. 10.
    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Yokoi, K., Hirukawa, H.: A realtime pattern generator for biped walking. In: ICRA, pp. 31–37. IEEE (2002)Google Scholar
  11. 11.
    Lanari, L., Hutchinson, S.: Planning desired center of mass and zero moment point trajectories for bipedal locomotion. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 637–642, November 2015Google Scholar
  12. 12.
    Lanari, L., Hutchinson, S.: Inversion-based gait generation for humanoid robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1592–1598 (2015)Google Scholar
  13. 13.
    Lanari, L., Hutchinson, S., Marchionni, L.: Boundedness issues in planning of locomotion trajectories for biped robots. In: 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 951–958, November 2014Google Scholar
  14. 14.
    Missura, M., Behnke, S.: Balanced walking with capture steps. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS, vol. 8992, pp. 3–15. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18615-3_1CrossRefGoogle Scholar
  15. 15.
    Park, J.H., Kim, K.D.: Biped robot walking using gravity-compensated inverted pendulum mode and computed torque control. In: Proceedings of the 1998 IEEE International Conference on Robotics and Automation, vol. 4, pp. 3528–3533 (1998)Google Scholar
  16. 16.
    Pratt, J.E., Carff, J., Drakunov, S.V., Goswami, A.: Capture point: a step toward humanoid push recovery. In: 2006 IEEE-RAS 6th International Conference on Humanoid Robots (Humanoids), pp. 200–207 (2006)Google Scholar
  17. 17.
    Silverman, L.M.: Inversion of multivariable linear systems. IEEE Trans. Autom. Control 14(3), 270–276 (1969)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Takenaka, T., Matsumoto, T., Yoshiike, T.: Real time motion generation and control for biped robot -1st report: walking gait pattern generation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1084–1091 (2009)Google Scholar
  19. 19.
    Urbann, O., Schwarz, I., Hofmann, M.: Flexible linear inverted pendulum model for cost-effective biped robots. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 128–131, November 2015Google Scholar
  20. 20.
    Urbann, O., Hofmann, M.: Modification of foot placement for balancing using a preview controller based humanoid walking algorithm. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS, vol. 8371, pp. 420–431. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44468-9_37CrossRefGoogle Scholar
  21. 21.
    Urbann, O., Tasse, S.: Observer based biped walking control, a sensor fusion approach. Auton. Robots 35(1), 37–49 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Leonardo Lanari
    • 1
  • Oliver Urbann
    • 2
  • Seth Hutchinson
    • 3
  • Ingmar Schwarz
    • 2
  1. 1.Dipartimento di Ingegneria Informatica, Automatica e GestionaleSapienza Università di RomaRomeItaly
  2. 2.Robotics Research InstituteTU Dortmund UniversityDortmundGermany
  3. 3.Electrical and Computer EngineeringUniversity of IllinoisChampaignUSA

Personalised recommendations