Cooperative Sensing for 3D Ball Positioning in the RoboCup Middle Size League

  • Wouter Kuijpers
  • António J. R. Neves
  • René van de Molengraft
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9776)

Abstract

As soccer in the RoboCup Middle Size League (MSL) starts resembling human soccer more and more, the time the ball is airborne increases. Robots equipped with a single catadioptric vision system will generally not be able to accurately observe depth due to limited resolution. Most teams, therefore, resort to projecting the ball on the field. Within the MSL several methods have already been explored to determine the 3D ball position, e.g., adding a high-resolution perspective camera or adding a Kinect sensor. This paper presents a new method which combines the omnivision camera data from multiple robots through triangulation. Three main challenges have been identified in designing this method: Inaccurate projections, Communication delay and Limited amount of data. An algorithm, considering these main challenges, has been implemented and tested. Performance tests with a non-moving ball (static situation) and two robots show an accuracy of 0.13 m for airborne balls. A dynamic test shows that a ball kicked by a robot could be tracked from the moment of the kick, if enough measurements have been received from two peer robots before the ball exceeds the height of the robots.

References

  1. 1.
    Cunha, B., Neves, A.J.R., Dias, P., Azevedo, J.L., Lau, N., Dias, R., Amaral, F., Pedrosa, E., Pereira, A., Silva, J., Cunha, J., Trifan, A.: CAMBADA 2015: Team Description Paper (2015)Google Scholar
  2. 2.
    Dias, A., Almeida, J., Silva, E., Lima, P.: Multi-robot cooperative stereo for outdoor scenarios. In: 2013 13th International Conference on Autonomous Robot Systems, pp. 1–6. IEEE, April 2013Google Scholar
  3. 3.
    Neves, A.J.R., Trifan, A., Dias, P., Azevedo, J.L.: Detection of aerial balls in robotic soccer using a mixture of color and depth information. In: 2015 IEEE International Conference on Autonomous Robot Systems and Competitions, Aveiro, pp. 227–232 (2015)Google Scholar
  4. 4.
    Robin, C., Lacroix, S.: Multi-robot target detection and tracking: taxonomy and survey. Auton. Rob. 40, 729–760 (2015)CrossRefGoogle Scholar
  5. 5.
    Santos, F., Almeida, L., Lopes, L.S., Azevedo, J.L., Cunha, M.B.: Communicating among robots in the RoboCup middle-size league. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 320–331. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11876-0_28CrossRefGoogle Scholar
  6. 6.
    Schoenmakers, F., Koudijs, G., Lopez, C., Briegel, M., van Wesel, H., Groenen, J., Hendriks, O., Klooster, O., Soetens, R., Van De Molengraft, R.: Tech United Eindhoven Team Description 2013 - Middle Size League (2013)Google Scholar
  7. 7.
    Schönbein, M., Kitt, B., Lauer, M.: Environmental perception for intelligent vehicles using catadioptric stereo vision systems. In: ECMR, pp. 189–194 (2011)Google Scholar
  8. 8.
    Kim, S.-W., Chong, Z.J., Qin, B., Shen, X., Cheng, Z., Liu, W., Ang, M.H.: Cooperative perception for autonomous vehicle control on the road: motivation and experimental results. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5059–5066. IEEE, November 2013Google Scholar
  9. 9.
    Silva, J., Antunes, M., Lau, N., Neves, A.J.R., Lopes, L.S.: Aerial ball perception based on the use of a single perspective camera. In: Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS, vol. 8154, pp. 235–246. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40669-0_21CrossRefGoogle Scholar
  10. 10.
    Trifan, A., Neves, A.J.R., Cunha, B., Azevedo, J.L.: UAVision: a modular time-constrained vision library for soccer robots. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS, vol. 8992, pp. 490–501. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18615-3_40CrossRefGoogle Scholar
  11. 11.
    Voigtländer, A., Lange, S., Lauer, M., Riedmiller, M.: Real-time 3D ball recognition using perspective and catadioptric cameras. In: ECMR 2007, pp. 1–6 (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Wouter Kuijpers
    • 1
  • António J. R. Neves
    • 2
  • René van de Molengraft
    • 1
  1. 1.Departement of Mechanical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.IRIS Lab/IEETA/DETIUniversity of AveiroAveiroPortugal

Personalised recommendations