Skin Diseases in Primary Immunodeficiencies

  • Samantha F. Vincent
  • Megan Casady
  • Anna Chacon
  • Anthony A. Gaspari


Primary immunodeficiencies are estimated to affect about 255,000 people in the United States, with at least 120 distinct primary immunodeficiencies described in the literature. They can generally be classified according to which arm of the immune system the defect targets (i.e., innate versus adaptive, humoral versus cellular). All of the primary immunodeficiencies are predisposed to recurrent and potentially severe infections but may also present with characteristic findings, which are not infectious in nature. The location of the defect within the immune system often correlates to the clinical presentation. However, many defects affect multiple functional components of immunity; hence considerable overlap exists.


Immunodeficiency Innate Adaptive Humoral Cellular Complement 


  1. 1.
    Hernandez PA, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet. 2003;34(1):70–4.CrossRefPubMedGoogle Scholar
  2. 2.
    Al Ustwani O, Kurzrock R, Wetzler M. Genetics on a WHIM. Br J Haematol. 2014;164(1):15–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Diaz GA, Gulino AV. WHIM syndrome: a defect in CXCR4 signaling. Curr Allergy Asthma Rep. 2005;5(5):350–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Wolff K, Johnson RA, Suurmond D. Viral infections of skin and mucosa. In: Fitzpatrick’s color atlas and synopsis of clinical dermatology. McGraw-Hill, New York; 2005.Google Scholar
  5. 5.
    van de Vijver E, van den Berg TK, Kuijpers TW. Leukocyte adhesion deficiencies. Hematol Oncol Clin North Am. 2013;27(1):101–16. viiiCrossRefPubMedGoogle Scholar
  6. 6.
    Bolognia JL. Primary Immunodeficiencies. In: Dermatology. Philadelphia: Elsevier; 2012.Google Scholar
  7. 7.
    Schmidt S, Moser M, Sperandio M. The molecular basis of leukocyte recruitment and its deficiencies. Mol Immunol. 2013;55(1):49–58.CrossRefPubMedGoogle Scholar
  8. 8.
    Forster R, Sozzani S. Emerging aspects of leukocyte migration. Eur J Immunol. 2013;43(6):1404–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Kilic SS, Etzioni A. The clinical spectrum of leukocyte adhesion deficiency (LAD) III due to defective CalDAG-GEF1. J Clin Immunol. 2009;29(1):117–22.CrossRefPubMedGoogle Scholar
  10. 10.
    Madkaikar M, et al. Clinical profile of leukocyte adhesion deficiency type I. Indian Pediatr. 2012;49(1):43–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Gardiner GJ, et al. A role for NADPH oxidase in antigen presentation. Front Immunol. 2013;4:295.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Holland SM. Chronic granulomatous disease. Hematol Oncol Clin North Am. 2013;27(1):89–99, viii.CrossRefPubMedGoogle Scholar
  13. 13.
    Dohil M, et al. Cutaneous manifestations of chronic granulomatous disease. A report of four cases and review of the literature. J Am Acad Dermatol. 1997;36(6 Pt 1):899–907.CrossRefPubMedGoogle Scholar
  14. 14.
    Chowdhury MM, Anstey A, Matthews CN. The dermatosis of chronic granulomatous disease. Clin Exp Dermatol. 2000;25(3):190–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Kaplan J, De Domenico I, Ward DM. Chediak-Higashi syndrome. Curr Opin Hematol. 2008;15(1):22–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Janeway C, Travers P, Walport M, Shlomchik M. Failures of host defense mechanisms. In: Immunobiology. New York: Garland Sciences; 2004.Google Scholar
  17. 17.
    Shiflett SL, Kaplan J, Ward DM. Chediak-Higashi syndrome: a rare disorder of lysosomes and lysosome related organelles. Pigment Cell Res. 2002;15(4):251–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Arbiser JL. Genetic immunodeficiencies: cutaneous manifestations and recent progress. J Am Acad Dermatol. 1995;33(1):82–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Akira S. Pathogen recognition by innate immunity and its signaling. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(4):143–56.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Picard C, Casanova JL, Puel A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IkappaBalpha deficiency. Clin Microbiol Rev. 2011;24(3):490–7.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Agnese DM, et al. Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis. 2002;186(10):1522–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Tal G, et al. Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J Infect Dis. 2004;189(11):2057–63.CrossRefPubMedGoogle Scholar
  23. 23.
    Lorenz E, et al. Association between the Asp299Gly polymorphisms in the Toll-like receptor 4 and premature births in the Finnish population. Pediatr Res. 2002;52(3):373–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Kiechl S, et al. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med. 2002;347(3):185–92.CrossRefPubMedGoogle Scholar
  25. 25.
    Suzuki N, et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature. 2002;416(6882):750–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Yamamoto T, et al. Functional assessment of the mutational effects of human IRAK4 and MyD88 genes. Mol Immunol. 2014;58(1):66–76.CrossRefPubMedGoogle Scholar
  27. 27.
    Picard C, et al. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine (Baltimore). 2010;89(6):403–25.CrossRefGoogle Scholar
  28. 28.
    Puel A, et al. Inherited disorders of NF-kappaB-mediated immunity in man. Curr Opin Immunol. 2004;16(1):34–41.CrossRefPubMedGoogle Scholar
  29. 29.
    Skattum L, et al. Complement deficiency states and associated infections. Mol Immunol. 2011;48(14):1643–55.CrossRefPubMedGoogle Scholar
  30. 30.
    Tichaczek-Goska D. Deficiencies and excessive human complement system activation in disorders of multifarious etiology. Adv Clin Exp Med. 2012;21(1):105–14.PubMedGoogle Scholar
  31. 31.
    Ram S, Lewis LA, Rice PA. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev. 2010;23(4):740–80.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Lipsker D, Hauptmann G. Cutaneous manifestations of complement deficiencies. Lupus. 2010;19(9):1096–106.CrossRefPubMedGoogle Scholar
  33. 33.
    Grimbacher B, Schaffer AA, Peter HH. The genetics of hypogammaglobulinemia. Curr Allergy Asthma Rep. 2004;4(5):349–58.CrossRefPubMedGoogle Scholar
  34. 34.
    Conley ME. Genes required for B cell development. J Clin Invest. 2003;112(11):1636–8.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Lin MT, et al. De novo mutation in the BTK gene of atypical X-linked agammaglobulinemia in a patient with recurrent pyoderma. Ann Allergy Asthma Immunol. 2006;96(5):744–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Hunter HL, McKenna KE, Edgar JD. Eczema and X-linked agammaglobulinaemia. Clin Exp Dermatol. 2008;33(2):148–50.CrossRefPubMedGoogle Scholar
  37. 37.
    Verma N, et al. Therapeutic management of primary immunodeficiency in older patients. Drugs Aging. 2013;30(7):503–12.CrossRefPubMedGoogle Scholar
  38. 38.
    Castigli E, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37(8):829–34.CrossRefPubMedGoogle Scholar
  39. 39.
    Samolitis NJ, et al. Dermatitis herpetiformis and partial IgA deficiency. J Am Acad Dermatol. 2006;54(5 Suppl):S206–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Paradela S, et al. Necrotizing vasculitis with a polyarteritis nodosa-like pattern and selective immunoglobulin A deficiency: case report and review of the literature. J Cutan Pathol. 2008;35(9):871–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Mellemkjaer L, et al. Cancer risk among patients with IgA deficiency or common variable immunodeficiency and their relatives: a combined Danish and Swedish study. Clin Exp Immunol. 2002;130(3):495–500.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Uram R, Rosoff PM. Isolated IgA deficiency after chemotherapy for acute myelogenous leukemia in an infant. Pediatr Hematol Oncol. 2003;20(6):487–92.CrossRefPubMedGoogle Scholar
  43. 43.
    Belgemen T, et al. Selective immunoglobulin M deficiency presenting with recurrent impetigo: a case report and review of the literature. Int Arch Allergy Immunol. 2009;149(3):283–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Mitra A, et al. Cutaneous granulomas associated with primary immunodeficiency disorders. Br J Dermatol. 2005;153(1):194–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Artac H, et al. Sarcoid-like granulomas in common variable immunodeficiency. Rheumatol Int. 2009;30(1):109–12.CrossRefPubMedGoogle Scholar
  46. 46.
    Lun KR, et al. Granulomas in common variable immunodeficiency: a diagnostic dilemma. Australas J Dermatol. 2004;45(1):51–4.CrossRefPubMedGoogle Scholar
  47. 47.
    Mazzatenta C, et al. Granulomatous dermatitis in common variable immunodeficiency with functional T-cell defect. Arch Dermatol. 2006;142(6):783–4.CrossRefPubMedGoogle Scholar
  48. 48.
    Lin JH, et al. Etanercept treatment of cutaneous granulomas in common variable immunodeficiency. J Allergy Clin Immunol. 2006;117(4):878–82.CrossRefPubMedGoogle Scholar
  49. 49.
    Etzioni A, Ochs HD. The hyper IgM syndrome—an evolving story. Pediatr Res. 2004;56(4):519–25.CrossRefPubMedGoogle Scholar
  50. 50.
    Gilmour KC, et al. Immunological and genetic analysis of 65 patients with a clinical suspicion of X linked hyper-IgM. Mol Pathol. 2003;56(5):256–62.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Kasahara Y, et al. Hyper-IgM syndrome with putative dominant negative mutation in activation-induced cytidine deaminase. J Allergy Clin Immunol. 2003;112(4):755–60.CrossRefPubMedGoogle Scholar
  52. 52.
    Kutukculer N, et al. Disseminated cryptosporidium infection in an infant with hyper-IgM syndrome caused by CD40 deficiency. J Pediatr. 2003;142(2):194–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Chang MW, et al. Mucocutaneous manifestations of the hyper-IgM immunodeficiency syndrome. J Am Acad Dermatol. 1998;38(2 Pt 1):191–6.CrossRefPubMedGoogle Scholar
  54. 54.
    Ohuchi M, et al. Good syndrome coexisting with leukopenia. Ann Thorac Surg. 2007;84(6):2095–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Di Renzo M, et al. Myelodysplasia and Good syndrome. A case report. Clin Exp Med. 2008;8(3):171–3.CrossRefPubMedGoogle Scholar
  56. 56.
    Jian L, Bin D, Haiyun W. Fatal pneumocystis pneumonia with good syndrome and pure red cell aplasia. Clin Infect Dis. 2004;39(11):1740–1.CrossRefPubMedGoogle Scholar
  57. 57.
    Agarwal S, Cunningham-Rundles C. Thymoma and immunodeficiency (Good syndrome): a report of 2 unusual cases and review of the literature. Ann Allergy Asthma Immunol. 2007;98(2):185–90.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Dorsey MJ, Orange JS. Impaired specific antibody response and increased B-cell population in transient hypogammaglobulinemia of infancy. Ann Allergy Asthma Immunol. 2006;97(5):590–5.CrossRefPubMedGoogle Scholar
  59. 59.
    Dogu F, Ikinciogullari A, Babacan E. Transient hypogammaglobulinemia of infancy and early childhood: outcome of 30 cases. Turk J Pediatr. 2004;46(2):120–4.PubMedGoogle Scholar
  60. 60.
    Kilic SS, et al. Transient hypogammaglobulinemia of infancy: clinical and immunologic features of 40 new cases. Pediatr Int. 2000;42(6):647–50.CrossRefPubMedGoogle Scholar
  61. 61.
    Stiehm ER. The four most common pediatric immunodeficiencies. J Immunotoxicol. 2008;5(2):227–34.CrossRefPubMedGoogle Scholar
  62. 62.
    Selim MA, et al. The cutaneous manifestations of atypical complete DiGeorge syndrome: a histopathologic and immunohistochemical study. J Cutan Pathol. 2008;35(4):380–5.CrossRefPubMedGoogle Scholar
  63. 63.
    Harrison LF, Shearer WT. Evaluation and management of B and T cell abnormalities. Allergy Proc. 1991;12(1):25–30.CrossRefPubMedGoogle Scholar
  64. 64.
    Orange JS, et al. The Wiskott-Aldrich syndrome. Cell Mol Life Sci. 2004;61(18):2361–85.CrossRefPubMedGoogle Scholar
  65. 65.
    Ochs HD, Notarangelo LD. Structure and function of the Wiskott-Aldrich syndrome protein. Curr Opin Hematol. 2005;12(4):284–91.CrossRefPubMedGoogle Scholar
  66. 66.
    Burns S, et al. Mechanisms of WASp-mediated hematologic and immunologic disease. Blood. 2004;104(12):3454–62.CrossRefPubMedGoogle Scholar
  67. 67.
    Ochs HD, et al. Wiskott-Aldrich syndrome: diagnosis, clinical and laboratory manifestations, and treatment. Biol Blood Marrow Transplant. 2009;15(1 Suppl):84–90.CrossRefPubMedGoogle Scholar
  68. 68.
    Dupuis-Girod S, et al. Autoimmunity in Wiskott-Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics. 2003;111(5 Pt 1):e622–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Conley ME, et al. An international study examining therapeutic options used in treatment of Wiskott-Aldrich syndrome. Clin Immunol. 2003;109(3):272–7.CrossRefPubMedGoogle Scholar
  70. 70.
    Moratto D, et al. Long-term outcome and lineage-specific chimerism in 194 patients with Wiskott-Aldrich syndrome treated by hematopoietic cell transplantation in the period 1980-2009: an international collaborative study. Blood. 2011;118(6):1675–84.CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Boztug K, et al. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med. 2010;363(20):1918–27.CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Kirkpatrick CH. Chronic mucocutaneous candidiasis. Pediatr Infect Dis J. 2001;20(2):197–206.CrossRefPubMedGoogle Scholar
  73. 73.
    Ahonen P, et al. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med. 1990;322(26):1829–36.CrossRefPubMedGoogle Scholar
  74. 74.
    Eyerich K, et al. Chronic mucocutaneous candidiasis, from bench to bedside. Eur J Dermatol. 2010;20(3):260–5.PubMedGoogle Scholar
  75. 75.
    Grimbacher B, et al. Hyper-IgE syndrome with recurrent infections—an autosomal dominant multisystem disorder. N Engl J Med. 1999;340(9):692–702.CrossRefPubMedGoogle Scholar
  76. 76.
    Holland SM, et al. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med. 2007;357(16):1608–19.CrossRefPubMedGoogle Scholar
  77. 77.
    Joshi AY, et al. Elevated serum immunoglobulin E (IgE): when to suspect hyper-IgE syndrome-A 10-year pediatric tertiary care center experience. Allergy Asthma Proc. 2009;30(1):23–7.CrossRefPubMedGoogle Scholar
  78. 78.
    Ohameje NU, Loveless JW, Saini SS. Atopic dermatitis or hyper-IgE syndrome? Allergy Asthma Proc. 2006;27(3):289–91.CrossRefPubMedGoogle Scholar
  79. 79.
    Chamlin SL, et al. Cutaneous manifestations of hyper-IgE syndrome in infants and children. J Pediatr. 2002;141(4):572–5.CrossRefPubMedGoogle Scholar
  80. 80.
    Eberting CL, et al. Dermatitis and the newborn rash of hyper-IgE syndrome. Arch Dermatol. 2004;140(9):1119–25.CrossRefPubMedGoogle Scholar
  81. 81.
    Freeman AF, Domingo DL, Holland SM. Hyper IgE (Job’s) syndrome: a primary immune deficiency with oral manifestations. Oral Dis. 2009;15(1):2–7.CrossRefPubMedGoogle Scholar
  82. 82.
    Ling JC, et al. Coronary artery aneurysms in patients with hyper IgE recurrent infection syndrome. Clin Immunol. 2007;122(3):255–8.CrossRefPubMedGoogle Scholar
  83. 83.
    Woellner C, et al. Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. J Allergy Clin Immunol. 2010;125(2):424–32.e8.CrossRefPubMedCentralPubMedGoogle Scholar
  84. 84.
    Orozco CV, et al. Hyper IgE syndrome. Opportune diagnosis and management. Rev Alerg Mex. 2008;55(1):38–45.PubMedGoogle Scholar
  85. 85.
    Su HC, Jing H, Zhang Q. DOCK8 deficiency. Ann N Y Acad Sci. 2011;1246:26–33.CrossRefPubMedGoogle Scholar
  86. 86.
    McGhee SA, Chatila TA. DOCK8 immune deficiency as a model for primary cytoskeletal dysfunction. Dis Markers. 2010;29(3–4):151–6.CrossRefPubMedCentralPubMedGoogle Scholar
  87. 87.
    Chu EY, et al. Cutaneous manifestations of DOCK8 deficiency syndrome. Arch Dermatol. 2012;148(1):79–84.CrossRefPubMedGoogle Scholar
  88. 88.
    Buckley RH. The multiple causes of human SCID. J Clin Invest. 2004;114(10):1409–11.CrossRefPubMedCentralPubMedGoogle Scholar
  89. 89.
    O’Shea JJ, et al. Jak3 and the pathogenesis of severe combined immunodeficiency. Mol Immunol. 2004;41(6–7):727–37.CrossRefPubMedGoogle Scholar
  90. 90.
    Aiuti A, et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med. 2009;360(5):447–58.CrossRefPubMedGoogle Scholar
  91. 91.
    Hacein-Bey-Abina S, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118(9):3132–42.CrossRefPubMedCentralPubMedGoogle Scholar
  92. 92.
    Hacein-Bey-Abina S, et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med. 2002;346(16):1185–93.CrossRefPubMedGoogle Scholar
  93. 93.
    Lavin MF. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol. 2008;9(10):759–69.CrossRefPubMedGoogle Scholar
  94. 94.
    Thompson D, et al. Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst. 2005;97(11):813–22.CrossRefPubMedGoogle Scholar
  95. 95.
    Nowak-Wegrzyn A, et al. Immunodeficiency and infections in ataxia-telangiectasia. J Pediatr. 2004;144(4):505–11.CrossRefPubMedGoogle Scholar
  96. 96.
    Paller AS, et al. Cutaneous granulomatous lesions in patients with ataxia-telangiectasia. J Pediatr. 1991;119(6):917–22.CrossRefPubMedGoogle Scholar
  97. 97.
    Cabana MD, et al. Consequences of the delayed diagnosis of ataxia-telangiectasia. Pediatrics. 1998;102(1 Pt 1):98–100.CrossRefPubMedGoogle Scholar
  98. 98.
    Ramesh N, et al. CD40-CD40 ligand (CD40L) interactions and X-linked hyperIgM syndrome (HIGMX-1). Clin Immunol Immunopathol. 1995;76(3 Pt 2):S208–13.CrossRefPubMedGoogle Scholar
  99. 99.
    Castigli E, et al. CD40 ligand/CD40 deficiency. Int Arch Allergy Immunol. 1995;107(1–3):37–9.CrossRefPubMedGoogle Scholar
  100. 100.
    Garcia-Lloret M, McGhee S, Chatila TA. Immunoglobulin replacement therapy in children. Immunol Allergy Clin N Am. 2008;28(4):833–49, ix.CrossRefGoogle Scholar
  101. 101.
    Hooper JA. Intravenous immunoglobulins: evolution of commercial IVIG preparations. Immunol Allergy Clin N Am. 2008;28(4):765–78, viii.CrossRefGoogle Scholar
  102. 102.
    Lougaris V, et al. Hyper immunoglobulin M syndrome due to CD40 deficiency: clinical, molecular, and immunological features. Immunol Rev. 2005;203:48–66.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Samantha F. Vincent
    • 1
  • Megan Casady
    • 1
  • Anna Chacon
    • 1
  • Anthony A. Gaspari
    • 1
  1. 1.Department of DermatologyUniversity of MarylandBaltimoreUSA

Personalised recommendations