Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104, 211 (1997)
CrossRef
Google Scholar
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
MATH
Google Scholar
Cohn, D., Hofmann, T.: The missing link-a probabilistic model of document content and hypertext connectivity. Adv. Neural Inf. Process. Syst. 430–436 (2001)
Google Scholar
Kalyanam, J., Mantrach, A., Saez-Trumper, D., Vahabi, H., Lanckriet, G.: Leveraging Social Context for Modeling Topic Evolution. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 517–526. ACM, New York, NY, USA (2015)
Google Scholar
Khalil, F., Wang, H., Li, J.: Integrating Markov model with clustering for predicting web page accesses. In: Proceeding of the 13th Australasian World Wide Web Conference (AusWeb07), pp. 63–74. AusWeb (2007)
Google Scholar
Guillamet, D., Bressan, M., Vitria, J.: A weighted non-negative matrix factorization for local representations. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-942–I-947 (2001)
Google Scholar
Khalil, F., Li, J., Wang, H.: An integrated model for next page access prediction. Int. J. Knowl. Web Intell. 1, 48–80 (2009)
CrossRef
Google Scholar
Singh, A.P., Gordon, G.J.: Relational learning via collective matrix factorization. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 650–658. ACM, New York, NY, USA (2008)
Google Scholar
Ye, W., Yanchun, Z., Bin, Z., Yan, J.: Semi-supervised collective matrix factorization for topic detection and document clustering. In: Proceedings of IEEE International Conference on Data Science in Cyberspace, Shenzhen, Guangdong, China (2017)
Google Scholar
Luo, X., Xuan, J., Lu, J., Zhang, G.: Measuring the semantic uncertainty of news events for evolution potential estimation. ACM Trans. Inf. Syst. 34, 24:1–24:25 (2016)
CrossRef
Google Scholar
Hurtado, J.L., Agarwal, A., Zhu, X.: Topic discovery and future trend forecasting for texts. J. Big Data. 3, 7 (2016)
CrossRef
Google Scholar
Sun, X., Wang, H., Li, J., Pei, J.: Publishing anonymous survey rating data. Data Min. Knowl. Discov. 23, 379–406 (2011)
MathSciNet
CrossRef
Google Scholar
Deng, L., Xu, B., Zhang, L., Han, Y., Zhou, B., Zou, P.: Tracking the evolution of public concerns in social media. In: Proceedings of the Fifth International Conference on Internet Multimedia Computing and Service, pp. 353–357. ACM (2013)
Google Scholar
Wang, H., Cao, J., Zhang, Y.: A flexible payment scheme and its role-based access control. IEEE Trans. Knowl. Data Eng. 17, 425–436 (2005)
CrossRef
Google Scholar
Zhu, C., Zhu, H., Ge, Y., Chen, E., Liu, Q., Xu, T., Xiong, H.: Tracking the evolution of social emotions with topic models. Knowl. Inf. Syst. 47, 517–544 (2016)
CrossRef
Google Scholar
Nallapati, R.M., Ahmed, A., Xing, E.P., Cohen, W.W.: Joint latent topic models for text and citations. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 542–550. ACM (2008)
Google Scholar
Vaca, C.K., Mantrach, A., Jaimes, A., Saerens, M.: A time-based collective factorization for topic discovery and monitoring in news. Presented at the (2014)
Google Scholar
Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS, pp. 556–562. MIT Press (2000)
Google Scholar
Cao, B., Shen, D., Sun, J.T., Wang, X., Yang, Q., Chen, Z.: Detect and track latent factors with online nonnegative matrix factorization. In: IJCAI, pp. 2689–2694 (2007)
Google Scholar
Saha, A., Sindhwani, V.: Learning evolving and emerging topics in social media: a dynamic Nmf approach with temporal regularization. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, pp. 693–702. ACM, New York, NY, USA (2012)
Google Scholar
Suh, S., Choo, J., Lee, J., Reddy, C.K.: L-EnsNMF: boosted local topic discovery via ensemble of nonnegative matrix factorization (2016)
Google Scholar
Wang, D., Gao, X., Wang, X.: Semi-supervised nonnegative matrix factorization via constraint propagation. IEEE Trans. Cybern. 46, 233–244 (2016)
CrossRef
Google Scholar
Ho, N.D., Van Dooren, P., Blondel, V.: Weighted nonnegative matrix factorization and face feature extraction. Submitt. Image Vis., Comput (2007)
Google Scholar
Wheeler, D.D.C.: Geographically weighted regression. In: Fischer, M.M., Nijkamp, P. (eds.) Handbook of Regional Science, pp. 1435–1459. Springer, Heidelberg (2014)
CrossRef
Google Scholar
Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1548–1560 (2011)
CrossRef
Google Scholar