Dynamic Relationship Building: Exploitation Versus Exploration on a Social Network

  • Bo Yan
  • Yang Chen
  • Jiamou LiuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10569)


Interpersonal relations facilitate information flow and give rise to positional advantage of individuals in a social network. We ask the question: How would an individual build relations with members of a dynamic social network in order to arrive at a central position in the network? We formalize this question using the dynamic network building problem. Two strategies stand out to solve this problem: The first directs the individual to exploit their social proximity by linking to nodes that are close-by, while the second tries its best to explore distant regions of the network. We evaluate and contrast these two strategies with respect to edge- and distance-based cost metrics, as well as other structural properties such as embeddedness and clustering coefficient. Experiments are performed on models of dynamic random graphs and real-world data sets. We then discuss and test ways that combine these two strategies.


Dynamic social networks Interpersonal ties Network evolution Centrality Exploitation-exploration tradeoff 


  1. 1.
    Agneessens, F., Borgatti, S.P., Everett, M.G.: Geodesic based centrality: unifying the local and the global. Soc. Netw. 49, 12–26 (2017)CrossRefGoogle Scholar
  2. 2.
    Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)CrossRefGoogle Scholar
  3. 3.
    Barabási, A.-L.: Network Science. Cambridge University Press, Cambridge (2016)zbMATHGoogle Scholar
  4. 4.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bearman, P.S., Moody, J.: Suicide and friendships among American adolescents. Am. J. Public Health 94(1), 89–95 (2004)CrossRefGoogle Scholar
  6. 6.
    Benner, M., Tushman, M.: Exploitation, exploration, and process management: the productivity dilemma revisited. Acad. Manag. Rev. 28(2), 238–256 (2003)CrossRefGoogle Scholar
  7. 7.
    Bolland, J.: Sorting out centrality: an analysis of the performance of four centrality models in real and simulated networks. Soc. Netw. 10, 233–253 (1988)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  9. 9.
    Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92, 1170–1182 (1987)CrossRefGoogle Scholar
  10. 10.
    Borgatti, S.: Identifying sets of key players in a social network. Comput. Math. Organ. Theory 12(1), 21–34 (2006)CrossRefGoogle Scholar
  11. 11.
    Burt, R.: Brokerage and Closure: An Introduction to Social Capital. Oxford University Press, Oxford (2005)Google Scholar
  12. 12.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  13. 13.
    Freeman, L.: Centrality in social networks: conceptual clarification. Soc. Netw. 1, 215–239 (1979)CrossRefGoogle Scholar
  14. 14.
    Génois, M., Vestergaard, C., Fournet, J., Panisson, A., Bonmarin, I., Barrat, A.: Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers. Netw. Sci. 3(3), 326–347 (2015)CrossRefGoogle Scholar
  15. 15.
    Gleditsch, K.S.: Expanded trade and GDP data. J. Conflict Resolut. 46(5), 712–724 (2002)CrossRefGoogle Scholar
  16. 16.
    Granovetter, M.: The strength of weak ties. Am. J. Sociol. 78(6), 1360–1380 (1973)CrossRefGoogle Scholar
  17. 17.
    Granovetter, M.: Economic action and social structure: the problem of embeddedness. Am. J. Sociol. 91(3), 481–510 (1985)CrossRefGoogle Scholar
  18. 18.
    Gulati, R.: Alliances and networks. Strateg. Manag. J. 19, 293–317 (1998)CrossRefGoogle Scholar
  19. 19.
    Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., den Broeck, W.V.: What in a crowd? Analysis of face-to-face behavioral networks. J. Theoret. Biol. 271, 166–180 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jackson, M.: A Survey of Models of Network Formation: Stability and Efficiency. Group Formation in Economics. Cambridge University Press, Cambridge (2005). pp. 11–57Google Scholar
  21. 21.
    Jackson, M., Rogers, B.: Meeting strangers and friends of friends: how random are social networks? Am. Econ. Rev. 97(3), 890–915 (2007)CrossRefGoogle Scholar
  22. 22.
    Jackson, M.O., Nei, S.: Networks of military alliances, wars, and international trade. Proc. Nat. Acad. Sci. USA 112(50), 15277–15284 (2015)CrossRefGoogle Scholar
  23. 23.
    Lee, S.H., Cotte, J., Noseworthy, T.J.: The role of network centrality in the flow of consumer influence. J. Consum. Psychol. 20(1), 66–77 (2010)CrossRefGoogle Scholar
  24. 24.
    Liu, J., Li, L., Russell, K.: What becomes of the broken hearted? An agent-based approach to self-evaluation, interpersonal loss, and suicide ideation. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, pp. 436–445. International Foundation for Autonomous Agents and Multiagent Systems (2017)Google Scholar
  25. 25.
    Liu, J., Moskvina, A.: Hierarchies, ties and power in organizational networks: model and analysis. Soci. Netw. Anal. Min. 6(1), 106:1–106:26 (2016)Google Scholar
  26. 26.
    Liu, J., Wei, Z.: Network, popularity and social cohesion: a game-theoretic approach. In: AAAI, pp. 600–606 (2017)Google Scholar
  27. 27.
    Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Physica A 390(6), 1150–1170 (2011)CrossRefGoogle Scholar
  28. 28.
    Morrison, E.: Newcomers’ relationships: the role of social network ties during socialization. Acad. Manag. J. 45(6), 1149–1160 (2002)Google Scholar
  29. 29.
    Moskvina, A., Liu, J.: How to build your network? A structural analysis. In: Proceedings of the IJCAI 2016, pp. 2597–2603. AAAI (2016)Google Scholar
  30. 30.
    Moskvina, A., Liu, J.: Integrating networks of equipotent nodes. In: Nguyen, H.T.T., Snasel, V. (eds.) CSoNet 2016. LNCS, vol. 9795, pp. 39–50. Springer, Cham (2016). doi: 10.1007/978-3-319-42345-6_4CrossRefGoogle Scholar
  31. 31.
    Moskvina, A., Liu, J.: Togetherness: an algorithmic approach to network integration. In: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 223–230. IEEE (2016)Google Scholar
  32. 32.
    Newman, M.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  34. 34.
    Osugi, T., Deng, K., Scott, S.: Balancing exploration and exploitation: a new algorithm for active machine learning. In: Proceedinsg of the ICDM 2005, pp. 330–337 (2005)Google Scholar
  35. 35.
    Padgett, J.F., Ansell, C.K.: Robust action and the rise of the medici, 1400–1434. Am. J. Sociol. 98(6), 1259–1319 (1993)CrossRefGoogle Scholar
  36. 36.
    Pitts, F.R.: The medieval river trade network of Russia revisited. Soc. Netw. 1(3), 285–292 (1978)CrossRefGoogle Scholar
  37. 37.
    Sparrowe, R.T., Liden, R.C., Wayne, S.J., Kraimer, M.L.: Social networks and the performance of individuals and groups. Acad. Manag. J. 44, 316–325 (2001)Google Scholar
  38. 38.
    Uzzi, B., Dunlap, S.: How to build your network. Harvard Bus. Rev. 83(12), 53–60 (2005)Google Scholar
  39. 39.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  40. 40.
    Yadav, A., Chan, H., Jiang, A.X., Xu, H., Rice, E., Tambe, M.: Using social networks to aid homeless shelters: dynamic influence maximization under uncertainty. In: Proceedings of the AAMAS 2016, pp. 740–748 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Beijing Institute of TechnologyBeijingChina
  2. 2.University of AucklandAucklandNew Zealand

Personalised recommendations