Using Parallel Strategies to Speed up Pareto Local Search

  • Jialong Shi
  • Qingfu Zhang
  • Bilel Derbel
  • Arnaud Liefooghe
  • Sébastien Verel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10593)


Pareto Local Search (PLS) is a basic building block in many state-of-the-art multiobjective combinatorial optimization algorithms. However, the basic PLS requires a long time to find high-quality solutions. In this paper, we propose and investigate several parallel strategies to speed up PLS. These strategies are based on a parallel multi-search framework. In our experiments, we investigate the performances of different parallel variants of PLS on the multiobjective unconstrained binary quadratic programming problem. Each PLS variant is a combination of the proposed parallel strategies. The experimental results show that the proposed approaches can significantly speed up PLS while maintaining about the same solution quality. In addition, we introduce a new way to visualize the search process of PLS on two-objective problems, which is helpful to understand the behaviors of PLS algorithms.


Multiobjective combinatorial optimization Pareto local search Parallel metaheuristics Unconstrained binary quadratic programming 



The work described in this paper was supported by the National Science Foundation of China under Grant 61473241, and a grant from ANR/RCC Joint Research Scheme sponsored by the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. A-CityU101/16), and France National Research Agency (ANR-16-CE23-0013-01).


  1. 1.
    Branke, J., Schmeck, H., Deb, K., Reddy, S.M.: Parallelizing multi-objective evolutionary algorithms: cone separation. In: IEEE Congress on Evolutionary Computation. vol. 2, pp. 1952–1957. IEEE (2004)Google Scholar
  2. 2.
    Derbel, B., Liefooghe, A., Zhang, Q., Aguirre, H., Tanaka, K.: Multi-objective local search based on decomposition. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 431–441. Springer, Cham (2016). doi: 10.1007/978-3-319-45823-6_40 CrossRefGoogle Scholar
  3. 3.
    Drugan, M.M., Thierens, D.: Stochastic Pareto local search: Pareto neighbourhood exploration and perturbation strategies. J. Heuristics 18(5), 727–766 (2012)CrossRefGoogle Scholar
  4. 4.
    Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Anytime pareto local search. Eur. J. Oper. Res. 243(2), 369–385 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  6. 6.
    Geiger, M.J.: Decision support for multi-objective flow shop scheduling by the Pareto iterated local search methodology. Comput. Ind. Eng. 61(3), 805–812 (2011)CrossRefGoogle Scholar
  7. 7.
    Ke, L., Zhang, Q., Battiti, R.: Hybridization of decomposition and local search for multiobjective optimization. IEEE Trans. Cybern. 44(10), 1808–1820 (2014)CrossRefGoogle Scholar
  8. 8.
    Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., Talbi, E.G.: On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems. J. Heuristics 18(2), 317–352 (2012)CrossRefzbMATHGoogle Scholar
  9. 9.
    Liefooghe, A., Verel, S., Hao, J.K.: A hybrid metaheuristic for multiobjective unconstrained binary quadratic programming. Appl. Soft Comput. 16, 10–19 (2014)CrossRefGoogle Scholar
  10. 10.
    Liefooghe, A., Verel, S., Paquete, L., Hao, J.K.: Experiments on local search for bi-objective unconstrained binary quadratic programming. In: 8th International Conference on Evolutionary Multi-Criterion Optimization, vol. 9018, pp. 171–186 (2015)Google Scholar
  11. 11.
    Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Comput. 18(3), 450–455 (2014)CrossRefGoogle Scholar
  12. 12.
    Lust, T., Jaszkiewicz, A.: Speed-up techniques for solving large-scale biobjective TSP. Comput. Oper. Res. 37(3), 521–533 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lust, T., Teghem, J.: Two-phase Pareto local search for the biobjective traveling salesman problem. J. Heuristics 16(3), 475–510 (2010)CrossRefzbMATHGoogle Scholar
  14. 14.
    Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem an experimental study. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. LNE, vol. 535, pp. 177–199. Springer, Heidelberg (2004). doi: 10.1007/978-3-642-17144-4_7 CrossRefGoogle Scholar
  15. 15.
    Paquete, L., Schiavinotto, T., Stützle, T.: On local optima in multiobjective combinatorial optimization problems. Ann. Oper. Res. 156(1), 83–97 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)CrossRefGoogle Scholar
  17. 17.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jialong Shi
    • 1
    • 2
  • Qingfu Zhang
    • 1
    • 2
  • Bilel Derbel
    • 3
    • 4
  • Arnaud Liefooghe
    • 3
    • 4
  • Sébastien Verel
    • 5
  1. 1.Department of Computer ScienceCity University of Hong KongHong KongHong Kong
  2. 2.The City University of Hong Kong Shenzhen Research InstituteShenzhenChina
  3. 3.CNRS, Centrale Lille, UMR 9189 – CRIStALUniversity of LilleLilleFrance
  4. 4.Dolphin, Inria Lille – Nord EuropeLilleFrance
  5. 5.LISICUniversity Littoral Côte d’OpaleCalaisFrance

Personalised recommendations