Skip to main content

Bi-objective Water Cycle Algorithm for Solving Remanufacturing Rescheduling Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10593))

Abstract

This paper researches on the remanufacturing rescheduling problems (RRP) for new job insertion. The objective is to minimize the total flow time and the instability at the same time. A bi-objective function is developed for RRP and water cycle algorithm (WCA) is employed and improved to solve the problem. A discretization strategy is proposed to make the WCA applicable for handling the RRP. An ensemble of local search operators is developed to improve the performance of the discrete WCA (DWCA) algorithm. Six real-life remanufacturing cases with different scales are solved by DWCA. The results and comparisons indicate the superiority of the proposed DWCA scheme over the famous bi-objective algorithm, NSGAII.

This work was supported by National Nature Science Foundation under Grant 61603169, 61374187. This work was conducted within the Delta-NTU Corporate Lab for Cyber-Physical Systems with funding support from Delta Electronics Inc and the National Research Foundation (NRF) Singapore under the Corp Lab@University Scheme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flow hop and job shop scheduling. Math. Oper. Res. 1(2), 117–129 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Computing 45(4), 369–375 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jain, A.S., Meeran, S.: Deterministic job-shop scheduling: past, present and future. Eur. J. Oper. Res. 113(2), 390–434 (1998)

    Article  MATH  Google Scholar 

  4. Kacem, I., Hammadi, S., Borne, P.: Approach by localization and multi-objective evolutionary optimization for flexible job shop scheduling problems. IEEE Trans. Syst. Man Cybern. 32(1), 1–13 (2002)

    Article  MATH  Google Scholar 

  5. Wang, L., Zhou, G., Xu, Y., Liu, M.: A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop scheduling problem. Int. J. Prod. Res. 51(12), 3593–3608 (2013)

    Article  Google Scholar 

  6. Wang, S.Y., Wang, L., Xu, Y., Liu, M.: An effective estimation of distribution algorithm for the flexible job shop scheduling problem with fuzzy processing time. Int. J. Prod. Res. 51(12), 3778–3793 (2013)

    Article  Google Scholar 

  7. Gao, K.Z., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: An effective discrete harmony search algorithm for flexible job shop scheduling problem with fuzzy processing time. Int. J. Prod. Res. 53(19), 5896–5911 (2015)

    Article  Google Scholar 

  8. Xiong, J., Xing, L.N., Chen, Y.W.: Robust scheduling for multi-objective flexible job shop problems with random machine breakdown. Int. J. Prod. Econ. 141(1), 112–126 (2013)

    Article  Google Scholar 

  9. Ahmadi, E., Zandieh, M., Farrokh, M., Emami, S.M.: A multi objective optimization approach for flexible job shop scheduling problem under random machine breakdown by evolutionary algorithms. Comput. Oper. Res. 73, 56–66 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, K.Z., Suganthan, P.N., Pan, Q.K., et al.: An improved discrete artificial bee colony algorithm for flexible job shop scheduling problem with fuzzy processing time. Expert Syst. Appl. 65, 52–67 (2016)

    Article  Google Scholar 

  11. Zheng, X.L., Wang, L.: A knowledge-guided fruit fly optimization algorithm for dual resource constrained flexible job shop scheduling problem. Int. J. Prod. Res. 54(18), 5554–5566 (2016)

    Article  Google Scholar 

  12. Gao, L., Pan, Q.K.: A shuffled multi-swarm micro-migrating birds optimizer for a multi-resource-constrained flexible job shop scheduling problem. Inf. Sci. 372, 655–676 (2016)

    Article  Google Scholar 

  13. Karimi, S., Ardalan, Z., Naderi, B., Mohammadi, M.: Scheduling flexible job-shops with transportation times: mathematical models and a hybrid imperialist competitive algorithm. Appl. Math. Model. 41, 667–682 (2017)

    Article  MathSciNet  Google Scholar 

  14. Junior, M.L., Filho, M.G.: Production planning and control for remanufacturing: literature review and analysis. Prod. Plan. Control Manag. Oper. 23(6), 419–435 (2012)

    Article  Google Scholar 

  15. Krupp, J.A.: Structuring bills of material for automotive remanufacturing. Prod. Inventory Manag. J. 34, 46–52 (1993)

    Google Scholar 

  16. Ferguson, M.: The value of quality grading in remanufacturing. Prod. Oper. Manag. 18(3), 300–314 (2009)

    Article  Google Scholar 

  17. Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, M.: Water cycle algorithm – a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110–111, 151–161 (2012)

    Article  Google Scholar 

  18. Sadollah, A., Eskandar, H., Bahreininehad, A., Kim, J.H.: Water cycle, mine blast and improved mine blast algorithms for discrete sizing optimization of truss structures. Comput. Struct. 149, 1–16 (2015)

    Article  Google Scholar 

  19. Sadollah, A., Eskandar, H., Bahreininehad, A., Kim, J.H.: Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems. Appl. Soft Comput. 30, 58–71 (2015)

    Article  Google Scholar 

  20. Haddad, O.B., Moravej, M., Locaiciga, H.A.: Application of the water cycle algorithm to the optimal operation of reservoir systems. J. Irrig. Drain. Eng. 141(5), 04014064 (2014)

    Article  Google Scholar 

  21. Gao, K.Z., Zhang, Y.C., Sadollah, A., Lentzakis, A.: Jaya, harmony search and water cycle algorithms for solving large-scale real-life urban traffic light scheduling problem. Swarm Evol. Comput. https://doi.org/10.1016/j.swevo.2017.05.002

  22. Sadollah, A., Eskandar, H., Bahreininehad, A., Kim, J.H.: Water cycle algorithm for solving multi-objective optimization problems. Soft. Comput. 19(9), 2587–2603 (2015)

    Article  Google Scholar 

  23. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGAII. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  24. Zhang, Q.F., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–713 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiyong Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gao, K., Duan, P., Su, R., Li, J. (2017). Bi-objective Water Cycle Algorithm for Solving Remanufacturing Rescheduling Problem. In: Shi, Y., et al. Simulated Evolution and Learning. SEAL 2017. Lecture Notes in Computer Science(), vol 10593. Springer, Cham. https://doi.org/10.1007/978-3-319-68759-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68759-9_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68758-2

  • Online ISBN: 978-3-319-68759-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics