Skip to main content

Evolutionary Learning Based Iterated Local Search for Google Machine Reassignment Problems

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10593)

Abstract

Iterated Local Search (ILS) is a simple yet powerful optimisation method that iteratively invokes a local search procedure with renewed starting points by perturbation. Due to the complexity of search landscape, different ILS strategies may better suit different problem instances or different search stages. To address this issue, this work proposes a new ILS framework which selects the most suited components of ILS based on evolutionary meta-learning. It has three additional components other than ILS: meta-feature extraction, meta-learning and classification. The meta-feature and meta-learning steps are to generate a multi-class classifier by training on a set of existing problem instances. The generated classifier then selects the most suitable ILS setting when performing on new instances. The classifier is generated by Genetic Programming. The effectiveness of the proposed ILS framework is demonstrated on the Google Machine Reassignment Problem. Experimental results show that the proposed framework is highly competitive compared to 10 state-of-the-art methods reported in the literature.

Keywords

  • Iterated Local Search
  • Meta-learning
  • Google machine reassignment problem
  • Genetic programming

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-68759-9_34
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-68759-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Roadef/euro challenge 2012: Machine reassignment. http://challenge.roadef.org/2012/en/

  2. Afsar, H.M., Artigues, C., Bourreau, E., Kedad-Sidhoum, S.: Machine reassignment problem: the ROADEF/EURO challenge 2012. Ann. Oper. Res. 242(1), 1–17 (2016)

    Google Scholar 

  3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)

    CrossRef  Google Scholar 

  4. Brandt, F., Speck, J., Völker, M.: Constraint-based large neighborhood search for machine reassignment. Ann. Oper. Res. 242(1), 63–91 (2016)

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw.: Practice Experience 41(1), 23–50 (2011)

    Google Scholar 

  6. de Carvalho, A.C.P.L.F., Freitas, A.A.: A tutorial on multi-label classification techniques. In: Abraham, A., Hassanien, AE., Snáŝel, V. (eds.) Foundations of Computational Intelligence, Studies in Computational Intelligence, vol. 5, pp. 177–195. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01536-6_8

  7. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180(10), 2044–2064 (2010)

    CrossRef  Google Scholar 

  8. Gavranović, H., Buljubašić, M., Demirović, E.: Variable neighborhood search for Google machine reassignment problem. Electron. Notes Discrete Math. 39, 209–216 (2012)

    CrossRef  MATH  Google Scholar 

  9. Lopes, R., Morais, V.W.C., Noronha, T.F., Souza, V.A.A.: Heuristics and matheuristics for a real-life machine reassignment problem. Int. Trans. Oper. Res. 22(1), 77–95 (2015)

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. Lourenço, H.R., Martin, O., Stützle, T.: A beginners introduction to iterated local search. In: Proceedings of MIC, pp. 1–6 (2001)

    Google Scholar 

  11. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics. International Series in Operations Research and Management Science, vol. 57, pp. 320–353. Springer, Heidelberg (2003). doi:10.1007/0-306-48056-5_11

  12. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research and Management Science, vol. 146, pp. 363–397. Springer, Heidelberg (2010). doi:10.1007/978-1-4419-1665-5_12

  13. Malitsky, Y., Mehta, D., O’Sullivan, B., Simonis, H.: Tuning parameters of large neighborhood search for the machine reassignment problem. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 176–192. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38171-3_12

    CrossRef  Google Scholar 

  14. Masson, R., Vidal, T., Michallet, J., Penna, P.H.V., Petrucci, V., Subramanian, A., Dubedout, H.: An iterated local search heuristic for multi-capacity bin packing and machine reassignment problems. Expert Syst. Appl. 40(13), 5266–5275 (2013)

    CrossRef  Google Scholar 

  15. Mehta, D., O’Sullivan, B., Simonis, H.: Comparing solution methods for the machine reassignment problem. In: Milano, M. (ed.) CP 2012. LNCS, pp. 782–797. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33558-7_56

    CrossRef  Google Scholar 

  16. Portal, G.M., Ritt, M., Borba, L.M., Buriol, L.S.: Simulated annealing for the machine reassignment problem. Ann. Oper. Res. 242(1), 93–114 (2016)

    MathSciNet  CrossRef  MATH  Google Scholar 

  17. Ritt, M.R.P.: An algorithmic study of the machine reassignment problem. Ph.D. thesis, Universidade Federal do Rio Grande do Sul (2012)

    Google Scholar 

  18. Sabar, N.R., Song, A.: Grammatical evolution enhancing simulated annealing for the load balancing problem in cloud computing. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, pp. 997–1003. ACM (2016)

    Google Scholar 

  19. Sabar, N.R., Song, A., Zhang, M.: A variable local search based memetic algorithm for the load balancing problem in cloud computing. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 267–282. Springer, Cham (2016). doi:10.1007/978-3-319-31204-0_18

    CrossRef  Google Scholar 

  20. Turky, A., Moser, I., Aleti, A.: An iterated local search with guided perturbation for the heterogeneous fleet vehicle routing problem with time windows and three-dimensional loading constraints. In: Wagner, M., Li, X., Hendtlass, T. (eds.) ACALCI 2017. LNCS, vol. 10142, pp. 279–290. Springer, Cham (2017). doi:10.1007/978-3-319-51691-2_24

    CrossRef  Google Scholar 

  21. Turky, A., Sabar, N.R., Sattar, A., Song, A.: Parallel late acceptance Hill-Climbing algorithm for the Google machine reassignment problem. In: Kang, B.H., Bai, Q. (eds.) AI 2016. LNCS, vol. 9992, pp. 163–174. Springer, Cham (2016). doi:10.1007/978-3-319-50127-7_13

    CrossRef  Google Scholar 

  22. Turky, A., Sabar, N.R., Song, A.: An evolutionary simulating annealing algorithm for Google machine reassignment problem. In: Leu, G., Singh, H.K., Elsayed, S. (eds.) Intelligent and Evolutionary Systems. PALO, vol. 8, pp. 431–442. Springer, Cham (2017). doi:10.1007/978-3-319-49049-6_31

    CrossRef  Google Scholar 

  23. Turky, A., Sabar, N.R., Song, A.: Cooperative evolutionary heterogeneous simulated annealing algorithm for Google machine reassignment problem. In: Genetic Programming and Evolvable Machines, pp. 1–28 (2017). doi:10.1007/s10710-017-9305-0

  24. Turky, A., Sabar, N.R., Song, A.: Neighbourhood analysis: a case study on Google machine reassignment problem. In: Wagner, M., Li, X., Hendtlass, T. (eds.) ACALCI 2017. LNCS, vol. 10142, pp. 228–237. Springer, Cham (2017). doi:10.1007/978-3-319-51691-2_20

    CrossRef  Google Scholar 

  25. Wang, Z., Lü, Z., Ye, T.: Multi-neighborhood local search optimization for machine reassignment problem. Comput. Oper. Res. 68, 16–29 (2016)

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayad Turky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Turky, A., Sabar, N.R., Sattar, A., Song, A. (2017). Evolutionary Learning Based Iterated Local Search for Google Machine Reassignment Problems. In: , et al. Simulated Evolution and Learning. SEAL 2017. Lecture Notes in Computer Science(), vol 10593. Springer, Cham. https://doi.org/10.1007/978-3-319-68759-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68759-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68758-2

  • Online ISBN: 978-3-319-68759-9

  • eBook Packages: Computer ScienceComputer Science (R0)