Advertisement

A Fast Objective Reduction Algorithm Based on Dominance Structure for Many Objective Optimization

  • Fangqing Gu
  • Hai-Lin Liu
  • Yiu-ming CheungEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10593)

Abstract

The performance of the most existing classical evolutionary multiobjective optimization (EMO) algorithms, especially for Pareto-based EMO algorithms, generally deteriorates over the number of objectives in solving many-objective optimization problems (MaOPs), in which the number of objectives is greater than three. Objective reduction methods that transform an MaOP into the one with few objectives, are a promising way for solving MaOPs. The dominance-based objective reduction methods, e.g. k-EMOSS and \(\delta \)-MOSS, omitting an objective while preserving the dominant structure of the individuals as much as possible, can achieve good performance. However, these algorithms have higher computational complexity. Therefore, this paper presents a novel measure for measuring the capacity of preserving the dominance structure of an objective set, i.e., the redundancy of an objective to an objective set. Subsequently, we propose a fast algorithm to find a minimum set of objectives preserving the dominance structure as much as possible. We compare the proposed algorithm with its counterparts on eleven test instances. Numerical studies show the effectiveness of the proposed algorithm.

Keywords

Many-objective optimization Evolutionary algorithm Objective reduction 

References

  1. 1.
    Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)CrossRefGoogle Scholar
  2. 2.
    Bandyopadhyay, S., Mukherjee, A.: An algorithm for many-objective optimization with reduced objective computations: a study in differential evolution. IEEE Trans. Evol. Comput. 19(3), 400–413 (2015)CrossRefGoogle Scholar
  3. 3.
    Brockhoff, D., Zitzler, E.: Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 533–542. Springer, Heidelberg (2006). doi: 10.1007/11844297_54 CrossRefGoogle Scholar
  4. 4.
    Brockhoff, D., Zitzler, E.: Objective reduction in evolutionary multiobjective optimization: theory and applications. Evol. Comput. 17(2), 135–166 (2009)CrossRefGoogle Scholar
  5. 5.
    Cheung, Y.M., Gu, F.: Online objective reduction for many-objective optimization problems. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1165–1171 (2014)Google Scholar
  6. 6.
    Cheung, Y.M., Gu, F., Liu, H.L.: Objective extraction for many-objective optimization problems: algorithm and test problems. IEEE Trans. Evol. Comput. 20(5), 755–772 (2016)CrossRefGoogle Scholar
  7. 7.
    Deb, K.: Multiobjective Optimization using Evolutionary Algorithms. Wiley, New York (2001)zbMATHGoogle Scholar
  8. 8.
    Deb, K., Mohan, M., Mishra, S.: Evaluating the \(\varepsilon \)-domination based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions. Evol. Comput. 13(4), 501–525 (2005)CrossRefGoogle Scholar
  9. 9.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  10. 10.
    Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)CrossRefGoogle Scholar
  11. 11.
    Eckart, Z., Marco, L., Lothar, T.: SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Proceedings of Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2001)Google Scholar
  12. 12.
    Farina, M., Amato, P.: A fuzzy definition of “optimality” for many-criteria optimization problems. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 34(3), 315–326 (2004)CrossRefGoogle Scholar
  13. 13.
    Guo, X., Wang, X., Wang, M., Wang, Y.: A new objective reduction algorithm for many-objective problems: employing mutual information and clustering algorithm. In: Proceedings of 2012 Eighth International Conference on Computational Intelligence and Security, pp. 11–16 (2012)Google Scholar
  14. 14.
    Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of multi-objective evolutionary algorithms on many-objective knapsack problems. IEEE Trans. Evol. Comput. 19(2), 264–283 (2014)CrossRefGoogle Scholar
  15. 15.
    Ishibuchi, H., Masuda, H., Nojima, Y.: Pareto fronts of many-objective degenerate test problems. IEEE Trans. Evol. Comput. 20(5), 807–813 (2016)CrossRefGoogle Scholar
  16. 16.
    Jaimes, A.L., Coello, C.A.C., Urías Barrientos, J.E.: Online objective reduction to deal with many-objective problems. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 423–437. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01020-0_34 CrossRefGoogle Scholar
  17. 17.
    Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015)CrossRefGoogle Scholar
  18. 18.
    Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Comput. 18(3), 450–455 (2014)CrossRefGoogle Scholar
  19. 19.
    López Jaimes, A., Coello Coello, C.A., Chakraborty, D.: Objective reduction using a feature selection technique. In: Proceedings of 10th Annual Conference on Genetic and Evolutionary Computation, pp. 673–680 (2008)Google Scholar
  20. 20.
    McClymont, K., Keedwell, E.: Deductive sort and climbing sort: new methods for non-dominated sorting. Evol. Comput. 20(1), 1–26 (2012)CrossRefGoogle Scholar
  21. 21.
    Narukawa, K., Rodemann, T.: Examining the performance of evolutionary many-objective optimization algorithms on a real-world application. In: Proceedings of 2012 Sixth International Conference on Genetic and Evolutionary Computing, pp. 316–319 (2012)Google Scholar
  22. 22.
    Nicola, B., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)CrossRefzbMATHGoogle Scholar
  23. 23.
    Freitas, A.R., Fleming, P.J., Guimaraes, F.: A non-parametric harmony-based objective reduction method for many-objective optimization. In: Proceedings of 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 651–656 (2013)Google Scholar
  24. 24.
    Russo, L.M.S., Francisco, A.P.: Quick hypervolume. IEEE Trans. Evol. Comput. 18(4), 481–502 (2014)CrossRefGoogle Scholar
  25. 25.
    Saxena, D.K., Duro, J.A., Tiwari, A., Deb, K., Zhang, Q.: Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans. Evol. Comput. 17(1), 77–99 (2013)CrossRefGoogle Scholar
  26. 26.
    Schutze, O., Lara, A., Coello Coello, C.A.: On the influence of the number of objectives on the hardness of a multiobjective optimization problem. IEEE Trans. Evol. Comput. 15(4), 444–455 (2011)CrossRefGoogle Scholar
  27. 27.
    Singh, H.K., Isaacs, A., Ray, T.: A pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems. IEEE Trans. Evol. Comput. 15(4), 539–556 (2011)CrossRefGoogle Scholar
  28. 28.
    Wang, H., Yao, X.: Objective reduction based on nonlinear correlation information entropy. Soft. Comput. 20(6), 2393–2407 (2016)CrossRefGoogle Scholar
  29. 29.
    Yuan, Y., Ong, Y.S., Gupta, A., Xu, H.: Objective reduction in many-objective optimization: evolutionary multiobjective approaches and comprehensive analysis. IEEE Trans. Evol. Comput. (2017). doi: 10.1109/TEVC.2017.2672668
  30. 30.
    Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)CrossRefGoogle Scholar
  31. 31.
    Zhou, Y., Chen, Z., Zhang, J.: Ranking vectors by means of the dominance degree matrix. IEEE Trans. Evol. Comput. 21(1), 34–51 (2017)CrossRefGoogle Scholar
  32. 32.
    Zhu, C., Xu, L., Goodman, E.D.: Generalization of Pareto-optimality for many-objective evolutionary optimization. IEEE Trans. Evol. Comput. 20(2), 299–315 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Guangdong University of TechnologyGuangdongChina
  2. 2.Department of Computer ScienceHong Kong Baptist University (HKBU)Hong Kong SARChina
  3. 3.HKBU Institute of Research and Continuing EducationShenzhenChina

Personalised recommendations