Evolutionary Game Network Reconstruction by Memetic Algorithm with l1/2 Regularization

  • Kai Wu
  • Jing Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10593)


Evolutionary Game (EG) theory is effective approach to understand and analyze the widespread cooperative behaviors among individuals. Reconstructing EG networks is fundamental to understand and control its collective dynamics. Most existing approaches extend this problem to the l 1-regularization optimization problem, leading to suboptimal solutions. In this paper, a memetic algorithm (MA) is proposed to address this network reconstruction problem with l 1/2 regularization. The problem-specific initialization operator and local search operator are integrated into MA to accelerate the convergence. We apply the method to evolutionary games taking place in synthetic and real networks, finding that our approach has competitive performance to eight state-of-the-art methods in terms of effectiveness and efficiency.


Compressed sensing Network reconstruction Memetic algorithm Evolutionary games Sparse reconstruction 



This work is partially supported by the Outstanding Young Scholar Program of National Natural Science Foundation of China (NSFC) under Grant 61522311, the Overseas, Hong Kong & Macao Scholars Collaborated Research Program of NSFC under Grant 61528205, and the Key Program of Fundamental Research Project of Natural Science of Shaanxi Province, China under Grant 2017JZ017.


  1. 1.
    Han, X., Shen, Z., Wang, W.X., Di, Z.: Robust reconstruction of complex networks from sparse data. Phys. Rev. Lett. 114, 028701 (2015)CrossRefGoogle Scholar
  2. 2.
    Wang, W.X., Lai, Y.C., Grebogi, C., Ye, J.: Network reconstruction based on evolutionary-game data via compressive sensing. Phys. Rev. X 1, 021021 (2011)Google Scholar
  3. 3.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58, 267–288 (1996)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Moscato, P.: On evolution, search, optimization, genetic algorithms and martialarts: towards memetic algorithms. Caltech Concurrent Computation Program, C3P Rep., 826 (1989)Google Scholar
  5. 5.
    Chen, X., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic computation. IEEE Trans. Evol. Comput. 15(5), 591–607 (2011)CrossRefGoogle Scholar
  6. 6.
    Ong, Y.S., Lim, M.H., Chen, X.: Research frontier-memetic computation–past, present & future. IEEE Comput. Intell. Mag. 5(2), 24–31 (2010)CrossRefGoogle Scholar
  7. 7.
    Herrity, K.K., Gilbert, A.C., Tropp, J.A.: Sparse approximation via iterative thresholding. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 624–627 (2006)Google Scholar
  8. 8.
    Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)CrossRefGoogle Scholar
  9. 9.
    Szabó, G., Fath, G.: Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Szabó, G., Tőke, C.: Evolutionary prisoner’s dilemma game on a square lattice. Phys. Rev. E 58, 69 (1998)CrossRefGoogle Scholar
  11. 11.
    Xu, Z.B., Guo, H., Wang, Y., Zhang, H.: Representative of L 1/2 regularization among L q (0 < q < 1) regularizations: an experimental study based on phase diagram. Acta Automatica Sinica 38(7), 1225–1228 (2012)MathSciNetGoogle Scholar
  12. 12.
    Xu, Z.B., Chang, X., Xu, F., Zhang, H.: L 1/2 regularization: a thresholding representation theory and a fast solver. IEEE Trans. Neural Netw. Learn. Syst. 23(7), 1013–1027 (2012)CrossRefGoogle Scholar
  13. 13.
    Eshellman, L.J.: Real-coded genetic algorithms and interval-schemata. Found. Genetic Algorithms 2, 187–202 (1993)Google Scholar
  14. 14.
    Neubauer, A.: A theoretical analysis of the non-uniform mutation operator for the modified genetic algorithm. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 93–96 (1997)Google Scholar
  15. 15.
    Knuth, D.E.: The Stanford Graph Base: A Platform for Combinatorial Computing. Addison-Wesley, Reading (1993)zbMATHGoogle Scholar
  16. 16.
    Grau, J., Grosse, I., Keilwagen, J.: PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics 31(15), 2595–2597 (2015)CrossRefGoogle Scholar
  17. 17.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefzbMATHGoogle Scholar
  18. 18.
    Erdős, P., Rényi, A.: On random graphs. Publicationes Mathematicae Debrecen 6, 290–297 (1959)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Newman, M.E., Watts, D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A 263(4), 341–346 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximations. Constr. Approx. 13(1), 57–98 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Donoho, D.L., Tsaig, Y.: Fast solution of l1 norm minimization problems when the solution may be sparse. IEEE Trans. Inf. Theory 54(11), 4789–4812 (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    Malioutov, D.M., Cetin, M., Willsky, A.S.: Homotopy continuation for sparse signal representation. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 733–736 (2005)Google Scholar
  25. 25.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Bertsekas, D.: Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific, Belmont (1982)zbMATHGoogle Scholar
  28. 28.
    Kim, S., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-pointmethod for large-scale l1-regularized least squares. IEEE J. Sel. Topics Sig. Process. 1(4), 606–617 (2007)CrossRefGoogle Scholar
  29. 29.
    Wu, K., Liu, J., Wang, S.: Reconstructing networks from profit sequences in evolutionary games via a multiobjective optimization approach with lasso initialization. Sci. Rep. 6, 37771 (2016)CrossRefGoogle Scholar
  30. 30.
    Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006)MathSciNetCrossRefGoogle Scholar
  31. 31.
  32. 32.
    Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)CrossRefGoogle Scholar
  33. 33.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Key Laboratory of Intelligent Perception and Image Understanding of Ministry of EducationXidian UniversityXi’anChina

Personalised recommendations