Adjusting Parallel Coordinates for Investigating Multi-objective Search

  • Liangli ZhenEmail author
  • Miqing Li
  • Ran Cheng
  • Dezhong Peng
  • Xin Yao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10593)


Visualizing a high-dimensional solution set over the evolution process is a viable way to investigate the search behavior of evolutionary multi-objective optimization. The parallel coordinates plot which scales well to the data dimensionality is frequently used to observe solution sets in multi-objective optimization. However, the solution sets in parallel coordinates are typically presented by the natural order of the optimized objectives, with rare information of the relation between these objectives and also the Pareto dominance relation between solutions. In this paper, we attempt to adjust parallel coordinates to incorporate this information. Systematic experiments have shown the effectiveness of the proposed method.



This work was supported in part by the National Natural Science Foundation of China under grants 61432012, 61329302, and the Engineering and Physical Sciences Research Council (EPSRC) of UK under grant EP/J017515/1.


  1. 1.
    Ankerst, M., Berchtold, S., Keim, D.A.: Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In: Proceedings of 1998 IEEE Symposium on Information Visualization, vol. 153, pp. 52–60, October 1998Google Scholar
  2. 2.
    Artero, A.O., de Oliveira, M.C.F., Levkowitz, H.: Enhanced high dimensional data visualization through dimension reduction and attribute arrangement. In: Proceedings of the 10th International Conference on Information Visualisation, pp. 707–712, July 2006Google Scholar
  3. 3.
    Coello, C.C.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intell. Mag. 1(1), 28–36 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Deb, K., Saxena, D.: Searching for pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. In: Proceedings of 2006 IEEE Congress on Evolutionary Computation, pp. 3352–3360, July 2006Google Scholar
  5. 5.
    de Freitas, A.R., Fleming, P.J., Guimares, F.G.: Aggregation trees for visualization and dimension reduction in many-objective optimization. Inf. Sci. 298, 288–314 (2015)Google Scholar
  6. 6.
    He, Z., Yen, G.G.: Visualization and performance metric in many-objective optimization. IEEE Trans. Evol. Comput. 20(3), 386–402 (2016)CrossRefGoogle Scholar
  7. 7.
    Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proceedings of the 1st IEEE Conference on Visualization, pp. 361–378, October 1990Google Scholar
  8. 8.
    Ishibuchi, H., Yamane, M., Akedo, N., Nojima, Y.: Many-objective and many-variable test problems for visual examination of multiobjective search. In: Proceedings of 2013 IEEE Congress on Evolutionary Computation, pp. 1491–1498. IEEE, July 2013Google Scholar
  9. 9.
    Johansson, J., Forsell, C.: Evaluation of parallel coordinates: overview, categorization and guidelines for future research. IEEE Trans. Vis. Comput. Graph. 22(1), 579–588 (2016)CrossRefGoogle Scholar
  10. 10.
    Köppen, M., Yoshida, K.: Substitute distance assignments in NSGA-II for handling many-objective optimization problems. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 727–741. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70928-2_55 CrossRefGoogle Scholar
  11. 11.
    Li, M., Grosan, C., Yang, S., Liu, X., Yao, X.: Multi-line distance minimization: a visualized many-objective test problem suite. IEEE Trans. Evol. Comput. (2017)Google Scholar
  12. 12.
    Li, M., Yang, S., Liu, X.: Shift-based density estimation for pareto-based algorithms in many-objective optimization. IEEE Trans. Evol. Comput. 18(3), 348–365 (2014)CrossRefGoogle Scholar
  13. 13.
    Li, M., Zhen, L., Yao, X.: How to read many-objective solution sets in parallel coordinates. CoRR abs/1705.00368 (2017)Google Scholar
  14. 14.
    Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Springer Science & Business Media, Heidelberg (2012)Google Scholar
  15. 15.
    Tuar, T., Filipi, B.: Visualization of pareto front approximations in evolutionary multiobjective optimization: a critical review and the prosection method. IEEE Trans. Evol. Comput. 19(2), 225–245 (2015)Google Scholar
  16. 16.
    Walker, D.J., Everson, R., Fieldsend, J.E.: Visualizing mutually nondominating solution sets in many-objective optimization. IEEE Trans. Evol. Comput. 17(2), 165–184 (2013)CrossRefGoogle Scholar
  17. 17.
    Zhang, X., Tian, Y., Cheng, R., Jin, Y.: An efficient approach to nondominated sorting for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 19(2), 201–213 (2015)CrossRefGoogle Scholar
  18. 18.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary Methods for Design, Optimisation and Control, pp. 95–100. International Center for Numerical Methods in Engineering (2002)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Liangli Zhen
    • 1
    • 2
    Email author
  • Miqing Li
    • 2
  • Ran Cheng
    • 2
  • Dezhong Peng
    • 1
  • Xin Yao
    • 2
    • 3
  1. 1.Machine Intelligence Laboratory, College of Computer ScienceSichuan UniversityChengduChina
  2. 2.CERCIA, School of Computer ScienceUniversity of BirminghamBirminghamUK
  3. 3.Department of Computer Science and EngineeringSouthern University of Science and TechnologyShenzhenChina

Personalised recommendations