Skip to main content

Evidence of a Unique Association Between Single Forest Vegetation-Types and Seral Sequences: Praise for the Concept of ‘Vegetation Series’

  • Chapter
  • First Online:
Geographical Changes in Vegetation and Plant Functional Types

Part of the book series: Geobotany Studies ((GEOBOT))

Abstract

Succession has always been a central issue in ecological theory. Ever since first historical formulations, mosaics of vegetation-types taken to be the result of successional processes were envisaged as the pieces composing the Plant Landscape. Following the seminal ideas of F.E. Clements and A. Tansley, first European vegetation scientists, namely G.E. Du Rietz and R. Tüxen, laid the foundations of a system of describing successional vegetation mosaics as a higher complexity level of the Plant Landscape. Such repetitive mosaic units would correspond to ‘elementary’ successional sequences. These included both metastable seral stages and an ecologically mature stable state: the climax stage. Such a successional unit could then be used, as a reference, to systematize Plant Landscape. Early views on succession, expressed by a linear chronological sequence leading to a single territorial stable climatic climax, have been nowadays greatly challenged. Models encompassing sets of non-equilibrium alternative vegetation states, as a function of environmental disturbance, have been developed throughout. Moreover, phytocoenotical diversity also arises from zonation processes, i.e the spatial differentiation of vegetation mosaics following spatial environmental gradients. We do not consider that subject in this paper. In spite of criticism, continental Europe’s phytosociology schools have been elaborating on contemporary concepts of ‘elementary successional units’ or vegetation series as relevant to Vegetation Science. A widely-followed contemporary formulation of vegetation series is that of S. Rivas-Martínez (An Inst Bot Cavanilles 33:179–188, 1976): for a given biogeographical context, in spatially contiguous units possessing uniform environmental conditions, a single successional sequence develops and includes a sole ecologically mature vegetation type—the climax stage (our paraphrase). The real-world existence of coherent vegetation mosaics as the result of succession in homogeneous habitats, possessing a single ‘climax’ stage, is still challenged by several authors. On the contrary, by testing this very hypothesis by means of a case-study on vegetation mosaics from several types of managed oak forests in central-southern Portugal, we found a verification of S. Rivas-Martínez model. Also, accounting for bibliographic sources of evidence supporting verification of the vegetation series hypothesis, we found that putative falsifications issued mostly from distinct semantic or methodological settings. Thus, we find that the concept is, in spite of this, scientifically sound as a basis for a typological system of Plant Landscape which is relevant for Vegetation Science and useful for Nature Management and Vegetation Mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson MJ et al (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28. https://doi.org/10.1111/j.1461-0248.2010.01552.x

    Article  Google Scholar 

  • Béguin C, Hegg O (1975) Quelques associations d’associations (sigmassociations) sur les anticlinaux jurassiens recouvertes d’une vegetation naturelle potentielle (essai de l’analyse scientifique du paysage). Doc Phytosoc 9–14:9–18

    Google Scholar 

  • Béguin C, Hegg O (1976) Une sigmassociation remarquable au pied du premier anticlinal jurassin. Doc Phytosoc 15–18:15–24

    Google Scholar 

  • Biondi E, Casavecchia S, Pesaresi S (2011) Phytosociological synrelevés and vegetation plant mapping: from theory to practice. Plant Biosys 145(2):261–273

    Article  Google Scholar 

  • Bioret F (2010) Un siècle de phytosociologie sigmatiste en France: du temps des pionniers aux applications moderns. Braun-Blanquetia 46:27–40

    Google Scholar 

  • Blasi C, Caporti F, R. (2005) Defining and mapping typological models at the landscape scale. Plant Biosyst 139(2):155–163

    Article  Google Scholar 

  • Bolòs O (1963) Botánica y geografía. Mem Real Acad Cienc Artes Barc 34:443–480

    Google Scholar 

  • Bolòs O (1984) Plant landscape (phytotopography). In: Kuhbier H, Alcover JA, Guerau T (eds) Biogeography and ecology of the Pityusic Islands. Dr. W. Junk Publisher, The Hague, pp 185–221

    Chapter  Google Scholar 

  • Braun-Blanquet J (1951) Pflanzensoziologie, 2nd edn. Springer, Wien, p 631

    Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie, 3rd edn. Springer, Wien, p 865

    Book  Google Scholar 

  • Braun-Blanquet J, Furrer E (1913) Remarques sur l’étude des groupements de plantes. Bull Soc Languedocienne de géographie 1913:20–41

    Google Scholar 

  • Braun-Blanquet J, Pavillard J (1922) Vocabulaire de sociologie végétale, 1st edn. Roumégous & Déhan, Montpelier, p 16

    Google Scholar 

  • Campbell B (1978) Similarity coefficients for classifying relevés. Vegetatio 37:101–109

    Article  Google Scholar 

  • Capelo J (2007) Nemorum Transtaganae Descriptio. Syntaxonomia numérica das comunidades florestais e pré-florestais do Baixo Alentejo. PhD Thesis, Technical University of Lisbon, 529 pp

    Google Scholar 

  • Carrión JS, Fernández S (2009) The survival of the ‘Natural Potential Vegetation’ concept (or the power of tradition). J Biogeogr 36:2202–2203

    Article  Google Scholar 

  • Chiaruccii A et al (2010) The concept of potential natural vegetation: an epitaph? J Veg Sci 21:1178–1128

    Article  Google Scholar 

  • Chytrý M, Tichý L, Holt J, Botta-Dukát Z (2002) Determination of diagnostic species with statistical fidelity measures. J Veg Science 13:79–90

    Article  Google Scholar 

  • Clements FE (1916) Plant sucession: an analysis of the development of vegetation. Carnegie Institution, Washington DC

    Book  Google Scholar 

  • Costa JC et al (2012) Vascular plant communities in Portugal (continental, Azores and Madeira). Glob Geobot 2:1–180

    Google Scholar 

  • Delbosc P, Bioret F, Panaïotis C (2015) Les séries de végétation de la vallée D’Asco (typologie et cartographie au 1 :25.000). Ecol Mediter 41(1):5–87

    Google Scholar 

  • Dovčak M, Frelich LE, Reich PB (2005) Pathways in old-field sucession to white-pine: seed rain, shade and climate effects. Ecol Monogr 75(3):363–378

    Article  Google Scholar 

  • Du Rietz GE (1936) Classification and nomenclature of vegetation units 1930–1935. Sven Bot Tidskr 30:580–589

    Google Scholar 

  • Feoli E, Orlóci L (1979) Analysis of concentration and detection of underlying factors in structured tables. Vegetatio 40:49–54

    Article  Google Scholar 

  • Géhu J-M (1974) Sur l’emploi de la méthode phytosociologique sigmatiste dans l’analyse, la définition et cartographie des paysages. CR Acad Sci Paris 379:1167–1170

    Google Scholar 

  • Géhu J-M (1976) Sur les paysages végétaux ou sigmassociations des pariries salées du Nord-Ouest de la France. Doc Phytosociol 15–18:57–62

    Google Scholar 

  • Géhu J-M (1977) Le concept de sigmassociation et son application a l’étude du paysage vegetal des falaises atlantiques françaises. Vegetatio 34:117–125

    Article  Google Scholar 

  • Géhu J-M (1979) Pour une approche nouvelle des paysages végétaux: la symphytosociologie. Bull Soc Bot France 126:213–223

    Google Scholar 

  • Géhu J-M (1986) Des complexes des groupements végétaux à la phytosociologie paysagère contenporaine. Inf Bot Ital 18:53–83

    Google Scholar 

  • Géhu J-M, Rivas-Martínez S (1980) Notions fondamentales de phytosociologie. Ber Int Symp Int Vereinigung Vegetationsk 1980:5–33

    Google Scholar 

  • Habeck JR, Much RW (1973) Fire dependent forests in the northern Rocky Mountains. Quat Res 3(3):408–424

    Article  Google Scholar 

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis, an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  • Humboldt A (1814–1825) Personal narrative of a journey to the equinoctial regions of the new continent [Trad. Jason Wilson 1995. Penguin Classics], 310 p

    Google Scholar 

  • Ichter J, Evans D, Richard D (2014) Terrestrial habitat mapping in Europe: an overview. European Environment Comission, 154 p

    Google Scholar 

  • Jongman RHG, Ter Braak CFJ, Van Tongeren OFR (1995) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, p 299

    Book  Google Scholar 

  • Loidi J, Fernández-González F (2012) Potential natural vegetation: reburying or reboring? J Veg Sci 23(3):596–604

    Article  Google Scholar 

  • Loidi J et al (2010) Understanding properly the ‘potential natural vegetation’ concept. J Biogeogr 37(11):2209–2211

    Article  Google Scholar 

  • Mucina L et al (2016) Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl Veg Sci 19(S1):3–264

    Article  Google Scholar 

  • Pedrotti F (2013) Plant and vegetation mapping. Springer, Berlin, p 294

    Book  Google Scholar 

  • Peterson WD, Reich PP (2001) Prescribed fire in oak savanna: fire effects on stand structure and dynamics. Ecol Appl 11(3):913–917

    Article  Google Scholar 

  • Rivas-Martínez S (1976) Sinfitosociología, una nueva metodología para el estudio del paisage vegetal. An Inst Bot Cavanilles 33:179–188

    Google Scholar 

  • Rivas-Martínez S (1997) Syntaxonomical synopsis of the potential natural plant communities of North America, I. Itinera Geobot 10:5–148

    Google Scholar 

  • Rivas-Martínez S (2005) Notions on dynamic-catenal phytosociology as a basis of landscape science. Plant Biosyst 139(2):135–114

    Article  Google Scholar 

  • Rivas-Martínez S (2014) Biogeography of Spain and Portugal. Preliminary typological synopsis. Int J Geobot Res 4:1–64

    Google Scholar 

  • Rivas-Martínez S, Sánchez-Mata D, Costa M (1999) North american boreal and western temperate forest vegetation (syntaxonomical synopsis of the potential natural plant communities of North America II). Itinera Geobot 12:5–316

    Google Scholar 

  • Rivas-Martínez S, Rivas Sáenz S, Penas Merino A (2011) World bioclimatic classification system. Global Geobotany 1:1–634. + 4 maps

    Google Scholar 

  • Schithüsen J (1968) Allgemeine Vegetationsgeographie. Lerbuch der Allgemeinen Geographie 4, Berlin

    Google Scholar 

  • Schwabe A (1997) Sigmachorology as a subject of phytosociological research: a review. Phytocoenologia 27(4):463–507

    Article  Google Scholar 

  • Sequeira M et al. (2011) Checklist da Flora de Portugal (continental, Açores e Madeira). ALFA, The Portuguese Association of Phytosociology, 74 p. https://bibliotecadigital.ipb.pt/bitstream/10198/6971/4/2011%20Checklist%20da%20Flora%20de%20Portugal.pdf. Accessed 23 Jun 2016

  • Sivim (2016) Sistema de Información de la Vegetación Ibérica y Macaronésica [database]. http://www.sivim.info/sivi/. Accessed 23 Jun 2016

  • Theurillat JP (1992) L’analyse du paisage végétale en symphytocoenologie: ses niveaux et leurs domaines spatiaux. Bull Ecol 23:83–92

    Google Scholar 

  • Tichy L, Holt J (2006) JUICE Program for management, analysis and classification of ecological data. Masaryk University, Brno Czech Republic, p 103

    Google Scholar 

  • Troll C (1968) Landschaftsökologie. Ber Int Symp Int Vereinigung Vegetationsk 1963:1–21

    Google Scholar 

  • Tüxen R (1973) Vorschlag zur Aufnahme von Gesellschaftkomplexen in potentiell natürlichen Vegetationsgebieten. Acta Bot Acad Sci Hung 19:379–384

    Google Scholar 

  • Tüxen R, Preising E (1942) Grundbegriffe und Methoden zum studium der Wasser und Sumpfpflanzen-Gesellschaften. Dtsch Wasserw 37:10–69

    Google Scholar 

  • Vigo J (1998) Some reflections on geobotany and vegetaion mapping. Acta Bot Barc 45:535–556

    Google Scholar 

  • Weber HE, Moravec J, Theurillat JP (2000) International Code of Phytosociological Nomenclature 3rd ed. J Veg Sci 11(5):739–768

    Article  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Wildi O (1989) New numerical solution to traditional phytosociological tabular classification. Vegetatio 81:95–106

    Article  Google Scholar 

  • Wildi O, Orlóci L (1990) Numerical exploration of community patterns. SPB Academic Publishing, The Hague, p 124

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Capelo .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Table S1

(XLSX 74 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Capelo, J. (2018). Evidence of a Unique Association Between Single Forest Vegetation-Types and Seral Sequences: Praise for the Concept of ‘Vegetation Series’. In: Greller, A., Fujiwara, K., Pedrotti, F. (eds) Geographical Changes in Vegetation and Plant Functional Types. Geobotany Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-68738-4_1

Download citation

Publish with us

Policies and ethics