Microbes in Termite Management: Potential Role and Strategies

  • Priyanka Verma
  • Ajar Nath YadavEmail author
  • Vinod Kumar
  • Md. Aslam Khan
  • Anil Kumar Saxena
Part of the Sustainability in Plant and Crop Protection book series (SUPP)


Several control methods like physical, chemical, and biological are adopted to control termites in various localities. Biological control methods are eco-friendly and target-specific; hence they could represent a suitable alternative to chemical control methods. Microbial biological control is based on the use, and proper adjustment, of natural enemies via microbial organisms, such as bacteria, fungi, virus, and nematodes with the aim of suppression and management of insect populations. A broad range of species, from different groups of microbial organisms, have strong association with termites, and some have been recorded as parasites, including species currently used as commercial biological control agents.


Biological control Termite Management Microorganisms 



The authors duly acknowledge the Department of Biotechnology, Akal College of Agriculture, Eternal University and Vice Chancellor, Eternal University for providing the motivation and research infrastructure.


  1. Acda, M. N. (2013). Geographical distribution of subterranean termites (Isoptera) in economically important regions of Luzon, Philippines. Philipp. Agricultural Sciences, 96, 205–209.Google Scholar
  2. Adoyo, F., Mukalama, J. B., & Enyola, M. (1997). Using Tithonia concoctions for termite control in Busia District, Kenya. ILEIA. Newsletter, 13, 24–25.Google Scholar
  3. Agunbiade, T., Nwilene, F., Onasanya, A., Semon, M., Togola, A., Tamo, M., & Falola, O. (2009). Resistance status of upland NERICA rice varieties to termite damage in Northcentral Nigeria. Journal of Applied Sciences, 9, 3864–3869.CrossRefGoogle Scholar
  4. Ahmed, M. (2012). Ecofriendly pest management of tea in Bangladesh. Two and a Bud, 59, 11–16.Google Scholar
  5. Ahmed, S., & Qasim, M. (2011). Foraging and chemical control of subterranean termites in a farm building at Faisalabad, Pakistan. Pakistan Journal of Life and Social Sciences, 9(1), 58–62.Google Scholar
  6. Ahmed, S., Akbar, W., & Riaz, M. A. (2004). Effect of crop rotation and intercropping on subterranean termites in wheat at Faisalabad. Pakistan Entomological, 26, 25–30.Google Scholar
  7. Ahmed S., Khan R. R., Riaz M. A. (2007). Some studies on the field performance of plant extracts against termites (Odontotermes guptai and Microtermes obesi) in sugarcane at Faisalabad. International Journal of Agriculture and Biology 9:398–400.Google Scholar
  8. Ahmed, S., Ashraf, M. R., Hussain, A., & Riaz, M. A. (2009). Pathogenicity of isolates of Metarhizium anisopliae from Gujranwala (Pakistan) against Coptotermes heimi (Wasmann) (Isoptera: Rhinotermitidae). International Journal of Agriculture and Biology, 11, 707–711.Google Scholar
  9. Akhurst, R. J., & Boemare, N. (1990). Biology and taxonomy of Xenorhabdus. In: R. Gaugler & H. K. Kaya (Eds.), Entomopathogenic nematodes in biological control, Boca Raton: CRC Press, pp. 75–87. Google Scholar
  10. Al Fazairy, A. A., & Hassan, F. A. (1993). Histopathology of termite Kalotermes Flavicollis Fabr. Infected with a nuclear Polyhedrosis virus. International Journal of Tropical Insect Science, 14:127–134.Google Scholar
  11. Alam, M., Alam, M., Abdullah, M., Begum, M., & Ahmed, T. (2012). Effects of insecticides on sugarcane termites in Modhupur Tract. Bangladesh Journal of Agricultural Research, 37, 295–299.CrossRefGoogle Scholar
  12. Anand, R., Prasad, B., & Tiwary, B. N. (2009). Relative susceptibility of Spodoptera litura pupae to selected entomopathogenic fungi. BioControl, 54, 85–92.CrossRefGoogle Scholar
  13. Ashfaq, M., & Aslam, M. (2001). Response of different insect pests to some sunflower (Helianthus annuus L., Compositae) genotypes and their correlation with yield component under field conditions. Journal of Biological Sciences, 1, 835–839.CrossRefGoogle Scholar
  14. Aslam, M., Suleman, N., Riaz, A., Rehman, A., & Zia, Q. (2000). Insect pests found on Helianthus annuus L. (Compositae) in the Potohar region of Pakistan. Pakistan Journal of Biological Sciences, 3, 963–964.CrossRefGoogle Scholar
  15. Badawi, A., Kady, H. A., & Faragalla, A. (1986). Termites (Isoptera) of Saudi Arabia, their hosts and geographical distribution1. Journal of Applied Entomology, 101, 413–420.CrossRefGoogle Scholar
  16. Basappa, H. (2004). Integrated pest management in sunflower: An Indian scenario. InProceedings of the 16 th international sunflower conference, North Dakota: Fargo, pp. 853–859. Google Scholar
  17. Baum, J. A., Johnson, T. B., & Carlton, B. C. (1999). Bacillus thuringiensis: Natural and recombinant bioinsecticide products. In: J. J. Menn & F. R. Hall (Eds.), Biopesticides: Use and delivery, Totowa: Humana Press, pp. 189–210.Google Scholar
  18. Bigger, M. (1966). The biology and control of termites damaging field crops in Tanganyika. Bulletin of Entomological Research, 56, 417–444.CrossRefGoogle Scholar
  19. Biswas, G. (2014). Insect pests of groundnut (Arachis hypogaea L.), nature of damage and succession with the crop stages. Bangladesh Journal of Agricultural Research, 39, 273–282.CrossRefGoogle Scholar
  20. Blaske, V. U., & Hertel, H. (2001). Repellent and toxic effects of plant extracts on subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 94, 1200–1208.CrossRefPubMedGoogle Scholar
  21. Campanhola, C., de Moraes, G. J., & de Sa, L. A. N. (1995). Review of IPM in South America. In: A. N. Mengech, K. N. Saxena, & H. N. B. Gopalan (Eds.), Integrated pest management in the tropics, Chichester: Wiley, pp. 121–152.Google Scholar
  22. Castilhos-Fortes, R., Matsumura, A. T. S., Diehl, E., & Fiuza, L. M. (2002). Susceptibility of Nasutitermes ehrhardti (Isoptera: Termitidae) to Bacillus thuringiensis subspecies. Brazilian Journal of Microbiology, 33, 219–222.CrossRefGoogle Scholar
  23. Collins, N. (1984). Termite damage and crop loss studies in Nigeria–assessment of damage to upland sugarcane. International Journal of Pest Management, 30, 26–28.Google Scholar
  24. Connick, W. J., Jr., Osbrink, W. L. A., Wright, M. S., Williams, K. S., Daigle, D. J., Boykin, D. L., & Lax, A. R. (2001). Increased mortality of Coptotermes formosanus (Isoptera: Rhinotermitidae) exposed to eicosanoid biosynthesis inhibitors and Serratia marcescens (Eubacteriales: Enterobacteriaceae). Environmental Entomology, 30, 449–455.CrossRefGoogle Scholar
  25. Constantino, R. (2002). The pest termites of South America: Taxonomy, distribution and status. Journal of Applied Entomology, 126, 355–365.CrossRefGoogle Scholar
  26. Cowie, R., Wood, T., Barnett, E., Sands, W., & Black, H. (1990). A checklist of the termites of Ethiopia with a review of their biology, distribution and pest status. African Journal of Ecology, 28, 21–33.CrossRefGoogle Scholar
  27. Culliney TW, Grace JK (2000) Prospects for biological control of subterranean termite (Isoptera: Rhinotermitidae), with special reference to Coptotermes formosanus. Bulletin of Entomological Research, 90, 9–21.Google Scholar
  28. Devi, K. K., & Kothamasi, D. (2009). Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochrome c oxidase of the termite respiratory chain. FEMS Microbiology Letters, 300, 195–200.CrossRefPubMedGoogle Scholar
  29. Devi, K. K., Seth, N., Kothamasi, S., & Kothamasi, D. (2007). Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (rambur) by cyanide poisoning under in vitro conditions. Current Microbiology, 54, 74–78.CrossRefPubMedGoogle Scholar
  30. Dua, S. (2014). Biological control of subterranean termites (Isoptera: Termitidae) with soil bacteria. Ph.D. thesis, Chaudhary Charan Singh Haryana Agricultural University, pp. 225Google Scholar
  31. Faragalla, A. R. A., & Al Qhtani, M. H. (2013). The urban termite fauna (Isoptera) of Jeddah city, Western Saudi Arabia. Life Science Journal, 10, 1695–1701.Google Scholar
  32. Federici, B. A., Bonning, B. C., & St. Leger, R. J. (2008). Improvement of insect pathogens as insecticides through genetic engineering. In: C. Hill & R. Sleator (Eds.), Pathobiotechnology, Austin: Landes Bioscience, pp. 15–40. Google Scholar
  33. Ferron, P. (1978). Biological control of insect pests by entomopathogenic fungi. Annual Review of Entomology, 23, 409–442.CrossRefGoogle Scholar
  34. Fuxa, J. R. (1990). New directions for insect control with baculoviruses. In: R. R. Baker & P. E. Dunn (Eds.), New directions in biological control: Alternatives for suppressing agricultural pests and diseases.Alan R. Liss, Inc., New York, pp. 97–113. Google Scholar
  35. Grace, J. K. (1997). Biological control strategies for suppression of termites. Journal of Agricultural Entomology, 14, 281–289.Google Scholar
  36. Grace, J., Goodell, B., Jones, W., Chandhoke, V., & Jellison, J. (1992). Inhibition of termite feeding by fungal siderophores. The International Research Group on Wood Preservation, Document No: IRGAVP/1558-92 Biological Problems (Fauna), pp. 1–4.Google Scholar
  37. Gui-Xiang L., Zi-Rong D., & Biao, Y. (1994). Introduction to termite research in China. Journal of Applied Entomology, 117, 360–369.Google Scholar
  38. Hemachandra, I. I., Edirisinghe, J. P., Karunaratne, W. I. P., Gunatilleke, C. S., & Fernando, R. S. (2014). Diversity and distribution of termite assemblages in montane forests in the Knuckles Region, Sri Lanka. International Journal of Tropical Insect Science, 34, 41–52.CrossRefGoogle Scholar
  39. Hemasree, E. (2013). A critical review on the natural occurrence of entomopathogenic fungi in agricultural ecosystem. International Journal of Applied Biology and Pharmaceutical Technology, 4, 372–375.Google Scholar
  40. Hofte, H., & Whiteley, H. R. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews, 53, 242–255.PubMedPubMedCentralGoogle Scholar
  41. Hui, E., & Webster, J. (2000). Influence of insect larvae and seedling roots on the host-finding ability of Steinernema feltiae (Nematoda: Steinernematidae). Journal of Invertebrate Pathology, 75, 152–162.CrossRefPubMedGoogle Scholar
  42. Inceoglu, A. B., Kamita, S. G., & Hammock, B. D. (2006). Genetically modified baculoviruses: A historical overview and future outlook. Advances in Virus Research, 68, 323–360.CrossRefPubMedGoogle Scholar
  43. Javaid, A., & Afzal, M. (2001). Incidence of termite attack on trees in University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan. Pakistan Journal of Zoology, 33, 80–81.Google Scholar
  44. Jayaraj, S. (1986). Role of insect pathogens in plant protection. Proceedings of the Indian National Science Academy, 1, 91–107.Google Scholar
  45. Jegorov, A., Kadlec, J., Novak, J., Matha, V., Sedmera, P., Triska, J., & Zahradnickova, H. (1989). Are the depsipeptides of Beauveria brongniartii involved in the entomopathogenic process?. In Proceedings of the international conference on biopesticides, theory and practice. Ceske Budejovice, pp. 71–81.Google Scholar
  46. Kalha, C. S., Singh, R. P., Kang, S. S., Hunjan, M. S., Gupta, V., & Sharma, R. (2014). Entomopathogenic viruses and bacteria for insect-pest control. In: D. P. Abrol (Ed.), Integrated pest management: Current concepts and ecological perspectives,  Academic Press, San Diego, pp. 225–244. Google Scholar
  47. Kanzaki, N., Giblin-Davis, R. M., Herre, E. A., Scheffrahn, R. H., & Center, B. J. (2010). Pseudaphelenchus vindai n. sp.(Tylenchomorpha: Aphelenchoididae) associated with termites (Termitidae) in Barro Colorado Island, Panama. Nematology, 12, 905–914.CrossRefGoogle Scholar
  48. Kaya, H. K., & Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology, 38, 181–206.CrossRefGoogle Scholar
  49. Kharub, A., & Chander, S. (2012). Production technology for malt barley. In: Verma, R. P. S., Kharub, A. S., Kumar, D., Sarkar, B., Selvakumar, R., Malik, R., & Sharma, I. (Eds.), Compendium on malting quality improvement in Barley, Sorghum & Corn, Directorate of Wheat Research, Karnal, pp. 56–62. Google Scholar
  50. Kubicek, C. P., & Druzhinina, I. S. (2007). Environmental and microbial relationships, The Mycota IV ), Springer, Berlin, pp. 159–187.Google Scholar
  51. Lacey, L. A., & Georgis, R. (2012). Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology, 44, 218–225.PubMedPubMedCentralGoogle Scholar
  52. Lacey, L., & Goettel, M. (1995). Current developments in microbial control of insect pests and prospects for the early 21st century. Entomophaga, 40, 3–27.Google Scholar
  53. Lai, P., Tamashiro, M., Yates, J., Su, N., Fujii, J., & Ebesu, R. (1983). Living plants in Hawaii attacked by Coptotermes formosanus. Proceedings of the Hawaiian Entomological Society, 24, 283–286.Google Scholar
  54. Lax, A. R., & Osbrink, W. L. (2003). United States Department of Agriculture–agriculture research service research on targeted management of the Formosan subterranean termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Pest Management Science, 59, 788–800.CrossRefPubMedGoogle Scholar
  55. Lysenko, O., & Kucera, M. (1971). Microorganisms as sources of new insecticidal chemicals: toxins. In: H. D. Burges & N. W. Hussey (Eds.), Microbial control of insects and mites, Academic Press, New York, pp. 205.Google Scholar
  56. Maayiem, D., Bernard, B. N., & Irunuoh, A. O. (2012). Indigenous knowledge of termite control: A case study of five farming communities in Gushegu District of Northern Ghana. Journal of Entomology and Nematology, 4, 58–64.Google Scholar
  57. Mahtur, Y. K., & Kishor, P. (1987). Recent concept of integrated management of key pests of agriculture crops. In: Y. K. Mathur, A. K. Bhattacharya, N. D. Pandey, K. D. Upadhyaya, & J. P. Srivastava (Eds.), Recent advances in entomology, Gopal Prakashan, Kanpur, pp. I–X. Google Scholar
  58. Meyer, V., Braack, L., Biggs, H., & Ebersohn, C. (1999). Distribution and density of termite mounds in the northern Kruger National Park, with specific reference to those constructed by Macrotermes Holmgren (Isoptera: Termitidae). African Entomology: Journal of the Entomological Society of Southern Africa, 7, 123–130.Google Scholar
  59. Mo, J., Wang, Z., Song, X., Guo, J., Cao, X., & Cheng, J. (2006). Effects of sublethal concentrations of ivermectin on behaviors of Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology, 47, 687–696.Google Scholar
  60. Mohammed, M., Abiodun, A. F., & Jibia, A. B. (2014). Denudation effect of termitaria and characterization of associated termite species in Lafia Nasarawa State, Nigeria. European Scientific Journal, 10, 185–195.Google Scholar
  61. Mugerwa, S. (2015). Infestation of African savanna ecosystems by subterranean termites. Ecological Complexity, 21, 70–77.CrossRefGoogle Scholar
  62. Munthali, D., Logan, J., Wood, T., & Nyirenda, G. (1999). Termite distribution and damage to crops on smallholder farms in southern Malawi. International Journal of Tropical Insect Science, 19, 43–49.CrossRefGoogle Scholar
  63. Muraleedharan, N. (1992). Pest control in Asia. In: K. C. Willson & N. C. Michael (Eds.), Tea: Cultivation to consumption, Springer, ​ Dordrecht, pp. 375–412. Google Scholar
  64. Muralidhara, S., Prasad, B., & Singh, R. (2013). Colonization and antagonistic activity of entomopathogenic Aspergillus sp. against tea termite (Microcerotermes beesoni Snyder). Current Science, 105, 1216–1619.Google Scholar
  65. Mwalongo, G. C., Mkayula, L. L., Mubofu, E. B., & Mwingira, B. A. (1999). Preventing termite attack. Environmentally friendly chemical combinations of cashew nut shell liquid, sulfited wattle tannin and copper (II) chloride. Green Chemistry, 1, 13–16.CrossRefGoogle Scholar
  66. Nahdy, M. S., Musaana, M., Ugen, M., & Areeke, E. (1994). Survey of pigeonpea production and postproduction systems in three districts of Uganda. In: S. N. Silim, S. Tuwafe, & S. Laxman (Eds.), Pigeonpea improvement in Eastern and Southern Africa, International Crops Research Institute for the Semi-Arid Tropics, pp. 67–73. Google Scholar
  67. Natsir, H., & Dali, S. (2014). Production and application of chitin deacetylase from Bacillus licheniformis HSA3-1a as Biotermicide. Marina. Chimica Acta, 15, 1–12.Google Scholar
  68. Nwilene, F., Agunbiade, T., Togola, M., Youm, O., Ajayi, O., Oikeh, S., Ofodile, S., & Falola, O. (2008). Efficacy of traditional practices and botanicals for the control of termites on rice at Ikenne, southwest Nigeria. International Journal of Tropical Insect Science, 28, 37–44.CrossRefGoogle Scholar
  69. Nyeko, P., & Nakabonge, G. (2008). Occurrence of pests and diseases in tree nurseries and plantations in Uganda. Study Commissioned by the Sawlog Production Grant Scheme, pp. 1–42.Google Scholar
  70. Omoya, F., & Kelly, B. (2014). Variability of the potency of some selected entomopathogenic bacteria (Bacillus spp. and Serratia spp.) on termites, Macrotermes bellicosus (Isoptera: Termitidae) after exposure to magnetic fields. International Journal of Tropical Insect Science, 34, 98–105.CrossRefGoogle Scholar
  71. Orikiriza, L., Nyeko, P., & Sekamatte, B. (2012). Farmers knowledge, perceptions and control of pestiferous termites in Nakasongola district, Uganda. Uganda Journal of Agricultural Science, 13, 71–83.Google Scholar
  72. Osbrink, W. L., Williams, K. S., Connick, W. J., Wright, M. S., & Lax, A. R. (2001). Virulence of bacteria associated with the Formosan subterranean termite (Isoptera: Rhinotermitidae) in New Orleans, LA. Environmental Entomology, 30, 443–448.CrossRefGoogle Scholar
  73. Oyetunji, O., Peluola, C., Nwilene, F., & Togola, A. (2014). Root and Stem Damage Caused by Termite-fungi Interaction on Rice. Journal of Applied Sciences, 14:1851–1857.Google Scholar
  74. Pandey, S., Singh, S., Yadav, A. N., Nain, L., & Saxena, A. K. (2013). Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Bioscience, Biotechnology, and Biochemistry, 77, 1474–1480.CrossRefPubMedGoogle Scholar
  75. Pardeshi, M., Kumar, D., & Bhattacharyya, A. (2010). Termite (insecta: isoptera) fauna of some agricultural crops of vadodara, gujarat (India). Records of the Zoological Survey of India, 110, 47–59.Google Scholar
  76. Pearce, M. J. (1997). Termites: Biology and pest management. CAB International, 36, 296–304.Google Scholar
  77. Pearce, M. J., Logan, J., & Tiben, A. (1995). Termites (Isoptera) from the Darfur region of the Sudan with comments on their pest status. Journal of Arid Environments, 30, 197–206.CrossRefGoogle Scholar
  78. Poinar, G. O., Jr. (1975). Entomogenous nematodes: A manual and host list of insect-nematode associations. EJ Brill, Leiden, p. 317. Google Scholar
  79. Poinar, G. O., & Thomas, G. M. (1966). Significance of Achromobacter nematophilus Poinar and Thomas (Achromobacteraceae: Eubacteriales) in the development of the nematode, DD-136 (Neoaplectana sp. Steinernematidae). Parasitology, 56, 385–390.CrossRefPubMedGoogle Scholar
  80. Rao, G., Saxena, K., Shiying, Y., Wen, P., & Tian, W. G. (2002). Insect pest problems of pigeonpea in Guangxi and Hainan provinces. Int Chickpea Pigeonpea. Newsletter, 9, 48–49.Google Scholar
  81. Rath, A., & Tidbury, C. (1996). Susceptibility of Coptotermes acinaciformis (Isoptera: Rhinotermitidae) and Nasutitermes exitiosus (Isoptera: Termitidae) to two commercial isolates of Metarhizium anisopliae. Sociobiology, 28, 67–72.Google Scholar
  82. Rathour, K. S., Ganguly, S., Das, T., Singh, P., Kumar, A., & Somvanshi, V. S. (2014). Biological management of subterranean termites (Odontotermes obesus) infesting wheat and pearl millet crops by entomopathogenic nematodes. Indian Journal of Nematology, 44, 97–100.Google Scholar
  83. Ravindran, K., Qiu, D., & Sivaramakrishnan, S. (2015). Sporulation characteristics and virulence of Metarhizium anisopliae against subterranean termites (Coptotermes formosanus). International Journal of Microbiological Research, 6, 01–04.Google Scholar
  84. Reddy, M. V., Yule, D., Reddy, V. R., & George, P. (1992). Attack on pigeonpea (Cajanus cajan (L.) Millsp.) by Odontotermes obesus (Rambur) and Microtermes obesi Holmgren (Isoptera: Microtermitinae). International Journal of Pest Management, 38, 239–240.Google Scholar
  85. Rouland-Lefèvre, C. (2011). Termites as pests of agriculture. In: D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis. Springer Netherlands, Dordrecht, pp. 499–517.Google Scholar
  86. Sarwar, M. (2015). Microbial insecticides-an ecofriendly effective line of attack for insect pests management. International Journal of Engineering and Advanced Research Technology, 1, 4–9.Google Scholar
  87. Schnepf, H. E., Cricmore, N., Vanrie, J., Lereclus, D., Baum, J., Feitelson, J., Zfi, d. D. R., & Dean, D. H. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62, 775–806.PubMedPubMedCentralGoogle Scholar
  88. Shah, R., & Shah, I. (2013). Report of termites infestation in tobacco (Nicotiana tabacum) from Khyber Pakhtoonkhwa, Pakistan. Journal of the Entomological Research, 37, 243–247.Google Scholar
  89. Shahina, F., & Tabassum, K. A. (2010). Virulence of Steinernema pakistanense against different insect species in laboratory condition. Pakistan Journal of Nematology, 28, 279–284.Google Scholar
  90. Shapiro-Ilan, D. I., & Gaugler, R. (2010). Nematodes: Rhabditida: Steinernematidae & Heterorhabditidae. In A. Shelton (Ed.), Biological control: A guide to natural enemies in North America. New York: Cornell University. Available from:
  91. Sharma, A., Babu, K., Nagarajan, S., Singh, S., & Kumar, M. (2004). Distribution and status of termite damage to wheat crop in India. Indian Journal of Entomology, 66, 235–237.Google Scholar
  92. Sileshi, G. W., Kuntashula, E., Matakala, P., & Nkunika, P. O. (2008). Farmers’ perceptions of tree mortality, pests and pest management practices in agroforestry in Malawi, Mozambique and Zambia. Agroforestry Systems, 72, 87–101.CrossRefGoogle Scholar
  93. Sileshi, G. W., Nyeko, P., Nkunika, P. O., Sekematte, B. M., Akinnifesi, F. K., & Ajayi, O. C. (2009). Integrating ethno-ecological and scientific knowledge of termites for sustainable termite management and human welfare in Africa. Ecology and Society, 14, 48.CrossRefGoogle Scholar
  94. Sindhu, S. S., Rakshiya, Y. S., & Verma, M. K. (2011). Biological Control of Termites by Antagonistic Soil Microorganisms. In: A. Singh, N. Parmar, & R. C. Kuhad (Eds.), Bioaugmentation, biostimulation and biocontrol. Springer, Berlin/Heidelberg, pp. 261–309. Google Scholar
  95. Singha, D., Singha, B., & Dutta, B. (2010). In vitro pathogenicity of Bacillus thuringiensis against tea termites. Journal of Biological Control, 24, 279–281.Google Scholar
  96. Singha, D., Singha, B., & Dutta, B. K. (2011). Potential of Metarhizium anisopliae and Beauveria bassiana in the control of tea termite Microtermes obesi Holmgren in vitro and under field conditions. Journal of Pest Science, 84, 69–75.Google Scholar
  97. Stansly, P. A., Nan-Yao, S., & Conner, J. M. (2001). Management of subterranean termites, Reticulitermes spp. (Isoptera: Rhinotermitidae) in a citrus orchard with hexaflumuron bait. Crop Protection, 20, 199–206.Google Scholar
  98. Suman, A., Yadav, A. N., & Verma, P. (2016). Endophytic Microbes in Crops: Diversity and Beneficial Impact for Sustainable Agriculture. In: D. P. Singh, H. B. Singh, & R. Prabha (Eds.), Microbial inoculants in sustainable agricultural productivity, Vol. 1.: Research Perspectives. Springer, India, pp. 117–143.Google Scholar
  99. Suyal, D. C., Yadav, A., Shouche, Y., & Goel, R. (2015). Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris) rhizosphere as revealed by 16S rRNA gene sequences. Biologia, 70, 305–313.CrossRefGoogle Scholar
  100. Tang, B., Tang, M., Chen, C., Qiu, P., Liu, Q., Wang, M., & Li, C. (2006). Characteristics of soil fauna community in the Dongjiao coconut plantation ecosystem in Hainan, China. Acta Ecologica Sinica, 26, 26–32.CrossRefGoogle Scholar
  101. Thierfelder, C., Cheesman, S., & Rusinamhodzi, L. (2013). Benefits and challenges of crop rotations in maize-based conservation agriculture (CA) cropping systems of southern Africa. International Journal of Agricultural Sustainability, 11, 108–124.CrossRefGoogle Scholar
  102. Togola, A., Kotoklo, E., Nwilene, F., Amevoin, K., Glitho, I., Oyetunji, O., & Kiepe, P. (2012a). Specific diversity and damages of termites on upland rice in Benin. Journal of Entomology, 9, 352–360.CrossRefGoogle Scholar
  103. Togola, A., Nwilene, F., Kotoklo, E., Amevoin, K., Glitho, I., Oyetunji, O., & Niang, A. (2012b). Effect of upland rice varieties and cultural practices on termite populations and damage in the field. Journal of Applied Sciences, 12, 675–680.CrossRefGoogle Scholar
  104. Tomar, S. P. S. (2013). Characteristics of agro-ecological knowledge of farmers on termites and their devastation in semi-irrigated farming system of central India. Insect Environment, 19, 142–152.Google Scholar
  105. Vaidya, R., Macmil, S., Vyas, P., & Chhatpar, H. (2003). The novel method for isolating chitinolytic bacteria and its application in screening for hyperchitinase producing mutant of Alcaligenes xylosoxidans. Letters in Applied Microbiology, 36, 129–134.CrossRefPubMedGoogle Scholar
  106. Verma, M., Sharma, S., & Prasad, R. (2009). Biological alternatives for termite control: A review. International Biodeterioration and Biodegradation, 63, 959–972.CrossRefGoogle Scholar
  107. Verma, P., Yadav, A. N., Kazy, S. K., Saxena, A. K., & Suman, A. (2013). Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. National Journal of Life Sciences, 10, 219–226.Google Scholar
  108. Verma, P., Yadav, A. N., Kazy, S. K., Saxena, A. K., & Suman, A. (2014). Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. International Journal of Current Microbiology and Applied Sciences, 3, 432–447.Google Scholar
  109. Verma, P., Yadav, A. N., Khannam, K. S., Panjiar, N., Kumar, S., Saxena, A. K., & Suman, A. (2015a). Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Annales de Microbiologie, 65, 1885–1899.CrossRefGoogle Scholar
  110. Verma, P., Yadav, A. N., Shukla, L., Saxena, A. K., & Suman, A. (2015b). Hydrolytic enzymes production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkiania mobilis IARI-MB-18 isolated from Manikaran hot springs. International Journal of Advanced Research, 3, 1241–1250.Google Scholar
  111. Verma, P., Yadav, A. N., Khannam, K. S., Kumar, S., Saxena, A. K., & Suman, A. (2016a). Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. Journal of Basic Microbiology, 56, 44–58.CrossRefPubMedGoogle Scholar
  112. Verma, P., Yadav, A. N., Khannam, K. S., Mishra, S., Kumar, S., Saxena, A. K., & Suman, A. (2016b). Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi Journal of Biological Sciences.
  113. Vimaladevi, P. S., & Prasad, Y. G. (2001). Nomuraea rileyi: A potential mycoinsecticide. In: R. K. Upadyay, K. G. Mukherji, & B. P. Chamola (Eds.), Biocontrol potential and its exploitation in sustainable agriculture insect Pests, vol 2. Kluwer Academic Plenum. New York, pp. 23–38.Google Scholar
  114. Vincent, C., Goettel, M. S., & Lazarovits, G. (2007). Biological control, a global perspective. Oxfordshire: CABI.CrossRefGoogle Scholar
  115. Wang, C., & Powell, J. E. (2003). Isolation and evaluation of Beauveria bassiana for control of Coptotermes formosanus and Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology, 41, 369–382.Google Scholar
  116. Wang, C. S., & St. Leger, R. J. (2007a). A scorpion neurotoxin increases the potency of a fungal insecticide. Nature Biotechnology, 25, 1455–1456.CrossRefPubMedGoogle Scholar
  117. Wang, C. S., & St. Leger, R. J. (2007b). The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure, and virulence. The Journal of Biological Chemistry, 282, 21110–21115.CrossRefPubMedGoogle Scholar
  118. Wang, C. S., & St. Leger, R. J. (2007c). The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryotic Cell, 6, 808–816.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Wells, J., Fuxa, J., & Henderson, G. (1995). Virulence of four fungal pathogens to Coptotermes formosanus (Isoptera: Rhinotermitidae). Journal of Entomological Science, 30, 208–215.CrossRefGoogle Scholar
  120. Werner, P. A., Prior, L. D., & Forner, J. (2008). Growth and survival of termite-piped Eucalyptus tetrodonta and E. miniata in northern Australia: Implications for harvest of trees for didgeridoos. Forest Ecology and Management, 256, 328–334.CrossRefGoogle Scholar
  121. Wood, T. G. (1991). Termites in Ethiopia: The environmental impact of their damage and resultant control measures. Ambio, 20, 136–138.Google Scholar
  122. Wood, T., Bednarzik, M., & Aden, H. (1987). Damage to crops by Microtermes najdensis (Isoptera, Macrotermitinae) in irrigated semi-desert areas of the Red Sea coast 1. The Tihama region of the Yemen Arab Republic. International Journal of Pest Management, 33, 142–150.Google Scholar
  123. Wraight, S. P., Inglis, G. D., & Goettel, M. S. (2007). Fungi. In: L. A. Lacey & H. K. Kaya (Eds.), Field manual of techniques in invertebrate pathology, 2nd ed. Springer, Dordrecht, pp. 223–248. Google Scholar
  124. Yadav, A. N. (2015). Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. PhD thesis, Birla Institute of Technology, Mesra, Ranchi/Indian Agricultural Research Institute, New Delhi, pp. 234. doi: 10.13140/RG.2.1.2948.1283/2.
  125. Yadav, A. N., Sachan, S. G., Verma, P., & Saxena, A. K. (2015a). Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. Journal of Bioscience and Bioengineering, 119, 683–693.CrossRefPubMedGoogle Scholar
  126. Yadav, A. N., Sachan, S. G., Verma, P., Tyagi, S. P., Kaushik, R., & Saxena, A. K. (2015b). Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World Journal of Microbiology and Biotechnology, 31, 95–108.CrossRefPubMedGoogle Scholar
  127. Yadav, A. N., Verma, P., Kumar, M., Pal, K. K., Dey, R., Gupta, A., Padaria, J. C., Gujar, G. T., Kumar, S., Suman, A., Prasanna, R., & Saxena, A. K. (2015c). Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Annals of Microbiology, 65, 611–629.Google Scholar
  128. Yadav, A. N., Sachan, S. G., Verma, P., Kaushik, R., & Saxena, A. K. (2016a). Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. Journal of Basic Microbiology, 56, 294–307.Google Scholar
  129. Yadav, A. N., Sachan, S. G., Verma, P., & Saxena, A. K. (2016b). Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian Journal of Experimental Biology, 54, 142–150.PubMedGoogle Scholar
  130. Yadav, A. N., Verma, P., Kumar, V., Sachan, S. G., & Saxena, A. K. (2017). Extreme cold environments: A suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Advances in Biotechnology and Microbiology, 2, 1–4.Google Scholar
  131. Yendol, W. G., & Paschke, J. D. (1965). Pathology of an entomophthora infection in the eastern subterranean termite, Reticulitermes fl avipes (Kollar). Journal of Invertebrate Pathology, 7, 414–422.CrossRefGoogle Scholar
  132. Yu, H., Gouge, D. H., & Shapiro-Ilan, D. I. (2010). A novel strain of Steinernema riobrave (Rhabditida: Steinernematidae) possesses superior virulence to subterranean termites (Isoptera: Rhinotermitidae). Journal of Nematology, 42, 91–95.PubMedPubMedCentralGoogle Scholar
  133. Zadji, L., Baimey, H., Afouda, L., Moens, M., & Decraemer, W. (2014). Characterization of biocontrol traits of heterorhabditid entomopathogenic nematode isolates from South Benin targeting the termite pest Macrotermes bellicosus. BioControl, 59, 333–344.CrossRefGoogle Scholar
  134. Zeng, T. (2004). Control of insect pests in sugarcane: Ipm approaches in China. Sugar Tech, 6, 273–279.CrossRefGoogle Scholar
  135. Zida, Z., Ouedraogo, E., Mando, A., & Stroosnijder, L. (2011). Termite and earthworm abundance and taxonomic richness under long-term conservation soil management in Saria, Burkina Faso, West Africa. Applied Soil Ecology, 51, 122–129.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Priyanka Verma
    • 1
  • Ajar Nath Yadav
    • 2
    Email author
  • Vinod Kumar
    • 2
  • Md. Aslam Khan
    • 3
  • Anil Kumar Saxena
    • 4
  1. 1.Department of Microbiology, Akal College of Basic SciencesEternal UniversitySirmourIndia
  2. 2.Department of Biotechnology, Akal College of AgricultureEternal UniversitySirmourIndia
  3. 3.Department of Biology, Faculty of ScienceJazan UniversityJazanSaudi Arabia
  4. 4.ICAR-National Bureau of Agriculturally Important MicroorganismsKusmaur, Mau Nath BhanjanIndia

Personalised recommendations