Eco-Friendly Termite Management in Tropical Conditions

  • Monica VermaEmail author
  • Sharad Verma
  • Satyawati Sharma
Part of the Sustainability in Plant and Crop Protection book series (SUPP)


Being important pests of temperate and tropical regions, termites are responsible for massive losses to agricultural crops and wooden structures. Chemical control is the most popular and effective method of management. However, the deleterious effect of continuous usage of chemical termiticides is of serious concern, and researchers throughout the world are actually searching for alternative approaches. This chapter encompasses the various non-chemical strategies developed so far. Physical methods of control are also discussed. Focus has been given on biological means of management with major emphasis drawn on fungi, bacteria, nematodes and plant-derived natural products (botanicals). Botanical pesticides are sustainable, biodegradable and easily available, with no effect on nontarget species, and do not cause pest resistance. Furthermore, the bioactive components present in the botanicals can be isolated, characterized, formulated and used as commercial termiticides.


Tropical Fungi Bacteria Nematodes Botanicals Bioactive components 


  1. Abe, T. (1995). The termite-symbionts system: how does it work and has it evolved as a superefficient decomposer in tropical terrestrial ecosystems? Kyoto: Center for Ecological Research, Kyoto University.Google Scholar
  2. Acda, M. N. (2009). Toxicity, tunneling and feeding behavior of the termite, Coptotermes vastator, in sand treated with oil of the physic nut, Jatropha curcas. Journal of Insect Science, 9, 64.PubMedCentralCrossRefGoogle Scholar
  3. Addisu, S., Mohamed, D., & Waktole, S. (2014). Efficacy of botanical extracts against termites, Macrotermes sp., (Isoptera: Termitidae) under laboratory conditions. International Journal of Agricultural Research, 9, 607–603.Google Scholar
  4. Adfa, M., Yoshimura, T., Komura, K., & Koketsu, M. (2010). Antitermite activities of coumarin derivatives and scopoletin from Protium javanicum Burm. f. Journal of Chemical Ecology, 36, 720–726.PubMedCrossRefGoogle Scholar
  5. Ahmed, S., Mustafa, T., Riaz, M. A., & Hussain, A. (2006a). Efficacy of insecticides against subterranean termites in sugarcane. International Journal of Agricultural and Biology, 8, 508–510.Google Scholar
  6. Ahmed, S., Riaz, M. A., & Shahid, M. (2006b). Response of Microtermes obesi (Isoptera: Termitidae) and its gut bacteria towards some plant extracts. Journal of Food, Agriculture and Environment, 4, 317–320.Google Scholar
  7. Bahiense, T. C., Fernandes, E. K. K., & Bittencourt, V. R. E. P. (2006). Compatibility of the fungus M. anisopliae and deltamethrin to control a resistant isolate of Boophilus microplus tick. Veterinary Parasitology, 141, 319–324.PubMedCrossRefGoogle Scholar
  8. Baker, P. (2005). Termite management for homeowners – cooperative extension. The University of Arizona Cooperative Extension
  9. Balachander, M., Remadevi, O. K., Sasidharan TO, & Sapna Bai, N. (2009). Infectivity of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) isolates to the arboreal termite Odontotermes sp. (Isoptera: Termitidae). International Journal of Tropical Insect Science, 29, 202–207.CrossRefGoogle Scholar
  10. Balachander, M., Remadevi, O. K., & Sasidharan TO. (2013). Dissemination of Metarhizium anisopliae infection among the population of Odontotermes obesus (Isoptera: Termitidae) by augmenting the fungal conidia with attractants. Journal of Asia-Pacific Entomology, 16, 199–208.CrossRefGoogle Scholar
  11. Bayatkashkoli, A., Taghiyari, H. R., Kameshki, B., Ravan, S., & Shamsian, M. (2016). Effects of zinc and copper salicylate on biological resistance of particleboard against Anacanthotermes vagans termite. International Biodeterioration & Biodegradation, 115, 26–30.CrossRefGoogle Scholar
  12. Bhanot, J. P., Batra, G. R., & Verma, A. N. (1991a). Effect of seed treatment with different insecticides on germination, termite damage and grain yield of barley. Journal of Insect Science, 4, 61–63.Google Scholar
  13. Bhanot, J. P., Verma, A. N., & Batra, G. R. (1991b). Effect of seed treatment with different insecticides on germination, termite (Microtermes obesi) damage and grain yield of wheat (Triticum aestivum). Indian Journal of Agriculture Science, 61, 689–691.Google Scholar
  14. Bhanot, J. P., & Singal, S. K. (2007). Management of termites in field crops. In J. P. Bhanot, H. R. Rohilla, & V. K. Kalra (Eds.), Recent trends in biology and management of polyphagous pests of agricultural importance (pp. 166–172). Hisar: CCS Haryana Agricultural University.Google Scholar
  15. Bhanot, J. P., Sharma, A. K., Batra, G. R., & Verma, A. N. (1995). Influence of different levels of irrigation and fertilizer on termite damage and yield of gram crop raised from aldrin treated and untreated seed. Journal of Insect Science, 7, 115–116.Google Scholar
  16. Bignell, D. E., & Eggleton, P. (1998). Termites. In P. Calow (Ed.), Encyclopedia of ecology and environmental management (pp. 744–746). Oxford: Blackwell Scientific.Google Scholar
  17. Boomsma, J. J., Baer, B., & Heinze, J. (2005). The evolution of male traits in social insects. Annual Review of Entomology, 50, 395–420.PubMedCrossRefGoogle Scholar
  18. Boongaling, E. G., Acda, M. N., Hernandez, H. P., & Rosario, E. J. (2008). Fractionation, derivatization and termiticidal activity of cashewnut (Anacardium occidentale L.) shell liquid against the Philippine milk termite (Coptotermes vastator Light). The Philippine Agricultural Scientist, 91, 408–415.Google Scholar
  19. Boucias, D. G., Farmerie, W. G., & Pendland, J. C. (1998). Cloning and sequencing the cDNA of the insecticidal toxin, Hirsutellin A. Journal of Invertebrate Pathology, 72, 258–261.PubMedCrossRefGoogle Scholar
  20. Breznak, J. A. (1982). Intestinal microbiota of termites and other xylophagous insects. Annual Review of Microbiology, 36, 323–343.PubMedCrossRefGoogle Scholar
  21. Breznak, J. A., & Brune, A. (1994). Role of microorganisms in the digestion of lignocelluloses by termites. Annual Review of Entomology, 39, 453–487.CrossRefGoogle Scholar
  22. Bultman, J. D., Beal, R. H., & Ampong, F. F. K. (1979). Natural resistance of some tropical African woods to Coptotermes formosanus Shiraki. Forest Products Journal, 29, 46–51.Google Scholar
  23. Buss, E. A., & Park-Brown, S. G. (2002). Natural products for insect pest management. London: Chapman Hall.Google Scholar
  24. Cantrell, C. L., Duke, S. O., Fronczek, F. R., Osbrink, W. L. A., Mamonov, L. K., Vassilyev, J. I., Wedge, D. E., & Dayan, F. E. (2007). Phytotoxic eremophilanes from Ligularia macrophylla. Journal of Agricultural and Food Chemistry, 55, 10656–10663.PubMedCrossRefGoogle Scholar
  25. Cheng, S. S., Chang, H. T., CL, W., & Chang, S. T. (2007). Anti-termitic activities of essential oils from coniferous trees against Coptotermes formosanus. Bioresource Technology, 98, 456–459.PubMedCrossRefGoogle Scholar
  26. Chouvenc, T., Efstathion, C. A., Elliott, M. L., & Su, N. Y. (2012). Resource competition between two fungal parasites in subterranean termites. Naturwissenschaften, 99, 949–958.PubMedCrossRefGoogle Scholar
  27. Collins, N. M. (1988). Termites. In E. Cranbrook (Ed.), Key environments of Malaysia. Oxford: Pergamon.Google Scholar
  28. Connick, W. J., Jr., Osbrink, W. L. A., Wright, M. S., Williams, K. S., Daigle, D. J., Boykin, W. L., & Lax, A. R. (2001). Increased mortality of Coptotermes formosanus (Isoptera: Rhinotermitidae) exposed to eicosanoid biosynthesis inhibitors and Serratia marcescens (Eubacteriales: Enterobacteriaceae). Environmental Entomology, 30, 449–455.CrossRefGoogle Scholar
  29. Cox, R. A., Rattigan, O. V., & Jones, R. L. (1995). Laboratory studies of BrO reactions of interest for the atmospheric ozone balance. In A. R. Bandy (Ed.), The chemistry of the atmosphere: Oxidants and oxidation in the earth‘s atmosphere (pp. 47–64). Cambridge: Royal Society of Chemistry.Google Scholar
  30. Delate, K. M., Grace, J. K., & Tome, C. H. M. (1995). Potential use of pathogenic fungi in baits to control the Formosan subterranean termite (Isoptera, Rhinotermitidae). Journal of Applied Entomology, 119, 429–433.CrossRefGoogle Scholar
  31. Devlin, J. F., & Zettel, T. (1999). Ecoagriculture: Initiatives in eastern and Southern Africa. Harare: Weaver Press.Google Scholar
  32. Dev, S., & Koul, O. (1997). Higher plants. In Insecticides of natural origin (p. 365). Amsterdam: Harwood Academic Press.Google Scholar
  33. Devi, K. K., & Kothamasi, D. (2009). Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochrome oxidase of the termite respiratory chain. FEMS Microbiology Letters, 300, 195–200.PubMedCrossRefGoogle Scholar
  34. Devi, K. K., Seth, N., Kothamasi, S., & Kothamasi, D. (2007). Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (Rambur) by cyanide poisoning under in vitro conditions. Current Microbiology, 54, 74–78.PubMedCrossRefGoogle Scholar
  35. Dibaa, F., Hadary, F., Panjaitan, S. D., & Yoshimura, T. (2013). Electromagnetic waves as nondestructive method to control subterranean termites Coptotermes curvignathus Holmgren and Coptotermes formosanus Shiraki. The 3rd International conference on sustainable future for human security SUSTAIN 2012. Procedia Environmental Sciences 17:150–159.Google Scholar
  36. Diehl, E., Junqueira, L. K., & Berti-Filho, E. (2005). Ant and termite mound coinhabitants in the wetlands of Santo Antonio da Patrulha, Rio Grande do Sul, Brazil. Brazilian Journal of Biology, 65, 431–437.CrossRefGoogle Scholar
  37. Ding, W., & Hu, X. P. (2010). Antitermitic effect of the Lantana camara plant on subterranean termites (Isoptera: Rhinotermitidae). Insect Sci., 17, 427–433.Google Scholar
  38. Dong, C., Zhang, J., Chen, W., Huang, H., & Hu, Y. (2007). Characterization of a newly discovered China variety of Metarhizium anisopliae (M. anisopliae var. dcjhyium) for virulence to termites, isoenzyme, and phylogenic analysis. Microbiological Research, 162(1), 53–61.PubMedCrossRefGoogle Scholar
  39. Dong, C., Zhang, J., Huang, H., Chen, W., & Hu, Y. (2009). Pathogenicity of new China variety of Metarhizium anisopliae (M. anisopliae var. dcjhyium) to subterranean termite, Odontotermes formosanus. Microbiological Research, 164, 27–35.PubMedCrossRefGoogle Scholar
  40. Elango, G., Abdul Rahuman, A., Kamaraj, C., Bagavan, A., Abduz Zahir, A., Santhoshkumar, T., Marimuthu, S., Velayutham, K., Jayaseelan, C., Vishnu Kirthi, A., & Rajakumar, G. (2012). Efficacy of medicinal plant extracts against Formosan subterranean termite, Coptotermes formosanus. Industrial Crops and Products, 36, 524–530.CrossRefGoogle Scholar
  41. Eller, F. J., Clausen, C. A., Green, F., & Taylor, S. L. (2010). Critical fluid extraction of Juniperus virginiana L. and bioactivity of extracts against subterranean termites and wood-rot fungi. Industrial Crops and Products, 32, 481–485.CrossRefGoogle Scholar
  42. Fokialakis, N., Osbrink, W. L. A., Mamonov, L. K., Gemejieva, N. G., Mims, A. B., Skaltsounis, A. L., Lax, A. R., & Cantrell, C. L. (2006). Antifeedant and toxicity effects of thiophenes from four Echinops species against the Formosan subterranean termite, Coptotermes formosanus. Pest Management Science, 62, 832–838.PubMedCrossRefGoogle Scholar
  43. Franca, T. S. F. A., Franca, F. J. N., Arango, R. A., Woodward, B. M., & Arantes, M. D. C. (2016). Natural resistance of plantation grown African mahogany (Khaya ivorensis and Khaya senegalensis) from Brazil to wood-rot fungi and subterranean termites. International Biodeterioration & Biodegradation, 107, 88–91.CrossRefGoogle Scholar
  44. Fujii, J. K. (1975). Effect of an entomogenous nematode Neoaplectana carpocapsae Weiser, on the Formosan subterranean termite, Coptotermes formosanus Shiraki, with ecological and biological studies on C. formosanus. Ph.D dissertation, University of Hawaii, Honolulu, Hawaii, USA, pp. 163.Google Scholar
  45. Fukatzu, T., Sato, H., & Kuriyama, H. (1997). Isolation, inoculation to insect host, and molecular phylogeny of an entomogenous fungus Paecilomyces tenuipes. Journal of Invertebrate Pathology, 70, 203–208.CrossRefGoogle Scholar
  46. Gerrits, R., & VanLatum, E. B. J. (1988). Plant-derived pesticides in developing countries: Possibilities and research needs (p. 104). The Hague: Netherlands’ Ministry of Housing, Physical Planning and Environment.Google Scholar
  47. Grace, J. K. (1998). Resistance of pine treated with chromated copper arsenate to the Formosan subterranean termite. Forest Products Journal, 48, 79–82.Google Scholar
  48. Grace, J. K., Yates, J. R., III, Tome, C. H. M., & Ohino, R. J. (1996). Termite-resistant construction: Uses of a stainless steel. Mesh to exclude Coptotermes formasanus (Isoptera: Rhinotermitidae). Sociobiology, 28, 365–372.Google Scholar
  49. Guan, Y. Q., Chen, J., Tang, J., Yang, L., & Liu, J. M. (2011). Immobilizing bifenthrin on wood for termite control. International Biodeterioration & Biodegradation, 65, 389–395.CrossRefGoogle Scholar
  50. Gupta, A., Sharma, S., & Naik, S. N. (2011). Biopesticidal value of selected essential oils against pathogenic fungus, termites, and nematodes. International Biodeterioration & Biodegradation, 65, 703–707.CrossRefGoogle Scholar
  51. Harborne, J. B. (1988). Introduction to ecological biochemistry (3rd ed.p. 356). London: Academic.Google Scholar
  52. Haverty, M. I., Woodrow, R. J., Nelson, L. J., & Grace, J. K. (2005). Identification of termite species by the hydrocarbons in their feces. Journal of Chemical Ecology, 31, 2119–2151.PubMedCrossRefGoogle Scholar
  53. Higashi, M., Yamamura, N., Abe, T., & Burns, T. P. (1991). Why don’t all termite species have a sterile worker caste? Proceedings of the Biological Sciences, 246, 25–29.CrossRefGoogle Scholar
  54. Hu, J., Chang, S., Peng, K., Hu, K., & Thevenon, M. F. (2015). Bio-susceptibility of shells of Camellia oleifera Abel. fruits to fungi and termites. International Biodeterioration & Biodegradation, 104, 219–223.CrossRefGoogle Scholar
  55. Hussain, A., & Tian, M. Y. (2013). Germination pattern and inoculum transfer of entomopathogenic fungi and their role in disease resistance among Coptotermes formosanus (Isoptera: Rhinotermitidae). International Journal of Agriculture and Biology, 12, 319–324.CrossRefGoogle Scholar
  56. Husseneder, C., Messenger, M. T., Su, N. Y., Grace, J. K., & Vargo, E. L. (2005). Colony social organization and population genetic structure of an introduced population of Formosan subterranean termite from New Orleans, Louisiana. Journal of Economic Entomology, 98, 1421–1434.PubMedCrossRefGoogle Scholar
  57. Husseneder, C., & Simms, D. M. (2008). Size and heterozygosity influence partner selection in the Formosan subterranean termite. Behavioral Ecology, 19, 764–773.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Huxham, L. M., Samueli, K. D. Z., Hele, J. B., & McCorkindale, N. J. (1989). In vivo and in vitro assays for pathogenicity of wild type and mutant strains of Metarhizium anisopliae for three insect species. Journal of Invertebrate Pathology, 53, 143–151.CrossRefGoogle Scholar
  59. Ibrahim, A., & Demisse, G. (2013). Evaluation of some botanicals against termites’ damage on hot pepper at Bako, western Ethiopia. International Journal of Agricultural Policy and Research, 1, 48–52.Google Scholar
  60. Isman, M. B. (2000). Plant essential oils for pest and disease management. Crop Protection, 19, 10603–10608.CrossRefGoogle Scholar
  61. Joshi, P. K., Singh, N. P., Singh, N. N., Gerpacio, R. V., & Pingali, P. L. (2005). Maize in India: Production systems, constraints and research priorities (p. 22). Mexico: D.F. CIMMYT.Google Scholar
  62. Kannaiyan, S. (1999). Botanicals in pest control. Inaugural address in the training programme on botanicals in pest management, December 1–10, 1999. Coimbatore: Tamilnadu Agriculture University.Google Scholar
  63. Kard, B. M. (1999). Mesh may fit in as a termite barrier. Pest Control, 67, 50–53.Google Scholar
  64. Kareru, P. G., Keriko, J. M., Kenji, G. M., & Gachanja, A. N. (2010). Anti-termite and antimicrobial properties of paint made from Thevetia peruviana (Pers.) Schum. oil extract. African Journal of Pharmacy and Pharmacology, 4, 087–089.Google Scholar
  65. Kaya, H. K., & Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology, 38, 181–206.CrossRefGoogle Scholar
  66. Kaya, H. K., Bedding, R. A., & Akhurst, R. J. (1993). An overview of insect-parasitic and entomopathogenic nematodes. In R. A. Bedding, R. Akhurst, & H. Kaya (Eds.), Nematodes and the biological control of insect pest (pp. 1–10). East Melbourne: CSIRO.Google Scholar
  67. Khan, K. I., Fazal, Q., & Jafri, R. H. (1977a). Pathogenicity of locally discovered Bacillus thuringiensis strain to the termites: Heterotermes indicola (Wassman) and Microcerotermes championi (Snyder). Pakistan Journal of Scientific Research, 29, 12–13.Google Scholar
  68. Khan, K. I., Fazal, Q., Jafri, R. H., & Ahmad, M. (1977b). Susceptibility of various species of termites to a pathogen, Serratia marcescens. Pakistan Journal of Scientific Research, 29, 46–47.Google Scholar
  69. Khan, K. I., Jafri, R. H., & Ahmad, M. (1985). The pathogenicity and development of Bacillus thuringiensis in termites. Pakistan Journal of Zoology, 17, 201–209.Google Scholar
  70. Khan, K. I., Jafri, R. H., Ahmad, M., & Khan, K. M. S. (1992). The pathogenicity of Pseudomonas aeruginosa against termites. Pakistan Journal of Zoology, 24, 243–245.Google Scholar
  71. Kirk, P. M. (2003). Indexfungorum. Available at (28/10/2009).
  72. Koul, O., Walia, S., & Dhaliwal, G. S. (2008). Essential oils as green pesticides: Potential and constraints. Biopesticides International, 4, 63–84.Google Scholar
  73. Kuriachan, I., & Gold, R. E. (1998). Evaluation of the ability of Reticulitermes flavipes Kollar, a subterranean termite (Isoptera: Rhinotermitidae) to differentiate between termiticide treated and untreated soils in laboratory tests. Sociobiology, 32, 151–166.Google Scholar
  74. Lacey, L. A., & Goettel, M. (1995). Current developments in microbial control of insect pests and prospects for the early 21st century. Entomophaga, 40, 3–27.CrossRefGoogle Scholar
  75. Lenz, M., & Runko, S. (1994). Protection of buildings, other structures and materials in ground contact from attack by subterranean termites (Isoptera) with a physical barrier-a fine mesh of high grade stainless steel. Sociobiology, 24, 1–16.Google Scholar
  76. Lewis, V. R. (1997). Alternative control strategies for termites. Journal of Agricultural Entomology, 14, 291–307.Google Scholar
  77. Lewis, V. R., & Haverty, M. I. (2000). Lethal effects of electrical shock treatments to the western drywood termite (isopteran: Kalotermitidae) and resulting damage to wooden test boards. Sociobiology, 37, 163–183.Google Scholar
  78. Manzoor, F., Beena, W., Malik, S., Naz, N., Naz, S., & Syed, W. H. (2011a). Preliminary evaluation of Ocimum sanctum as toxicant and repellent against termite, Heterotermes indicola (Wasmann) (Isoptera: Rhinotermitidae). Pakistan Journal of Science, 63, 59–62.Google Scholar
  79. Manzoor, F., Pervez, M., Adeyemi, M. M. H., & Malik, S. A. (2011b). Effects of three plant extracts on the repellency, toxicity and tunneling of subterranean termite Heterotermes Indicola (Wasmann). Journal of Applied Environmental and Biological Sciences, 1, 107–114.Google Scholar
  80. Mao, L., & Henderson, G. (2007). Antifeedant activity and acute and residual toxicity of alkaloids from Sophora flavescens (Leguminosae) against Formosan subterranean termites (Isoptera: Rhinotermitidae). Journal of Chemical Ecology, 100, 866–870.Google Scholar
  81. Meepagala, K. M., Osbrink, W., Ballew, A. Lax, A. R., & Duke, S. O. (2006). Natural product based amides against Formosan subterranean termites (Coptotermes formosanus). Abstracts of papers, 232nd ACS National Meeting, San Francisco, CA, United States Sept 10–14.Google Scholar
  82. Meyer, J. R. (2005). Isoptera. Department of Entomology. NC State University. Online at.
  83. Murugan, K., & Vasugi, C. (2011). Combined effect of Azadirachta indica and the entomopathogenic nematode Steinernema glaseri against subterranean termite, Reticulitermes flavipes. Journal of Entomological and Acarological Research, 43, 253–259.CrossRefGoogle Scholar
  84. Myles, T. G. (2005). Termite biology, Urban Entomology Programme.
  85. Nakashima, Y., & Shimizu, K. (1972). Antitermitic activity of Thujopsis dolabrata var Hondai. III. Components with a termiticidal activity. Miyazaki Daigaku Nogakubu Kenkyu Hokoku, 19, 251–259.Google Scholar
  86. Nakayama, F. S., & Osbrink, W. L. (2010). Evaluation of kukui oil (Aleurites moluccana) for controlling termites. Industrial Crops and Products, 31, 312–315.CrossRefGoogle Scholar
  87. Nas, M. N. (2004). In vitro studies on some natural beverages as botanical pesticides against Erwinia amylovora and Curtobacterium flaccumfaciensis subsp. poinsettiae. Turkish Journal of Agriculture, 28, 57–61.Google Scholar
  88. Nickle, W. R., & Welch, H. E. (1984). History, development and importance of insect nematology. In W. R. Nickle (Ed.), Plant and insect nematodes (pp. 627–653). New York: Dekker.Google Scholar
  89. Ogunsina, O. O., Oladimeji, M. O., & Faboro, E. O. (2009). Mortality and anti-feedants evaluation of hexane and ethanol extracts of Lantana camara (Verbenaceae), African nutmeg (Monodora myristica (Gaerth) Dunal) and Enuopiri (Euphorbia Laterifloria, Schum and Thonner) against subterranean termite workers (Macroterme michaelseni). Toxicological and Environmental Chemistry, 91, 971–977.CrossRefGoogle Scholar
  90. Osbrink, L. A. W., Williams, K. S., Connick, W. J., Jr., Wright, M. S., & Lax, A. R. (2001). Virulence of bacteria associated with the Formosan subterranean termite (Isoptera: Rhinotermitidae) in New Orleans, LA. Environmental Entomology, 30, 443–448.CrossRefGoogle Scholar
  91. Owusu, E. O., Akutse, K. S., & Afreh Nuamah, K. (2008). Effect of some traditional plant components on the control of termites, Macrotermes sp. (Isoptera: Termitidae). African Journal of Science and Technology, 9, 2–89.Google Scholar
  92. Paiva, P. M. G., Santana, G. S. M., Souza, I. F. A. C., Albuquerque, L. P., Agra Neto, A. C., Albuquerque, A. C., Luz, L. A., Napoleão, T. H., & Coelho, L. C. C. B. (2011). Effect of lectins from Opuntia ficus-indica Cladodes and Moringa oleifera seeds on survival of Nasutitermes corniger. International Biodeterioration & Biodegradation, 65, 982–989.CrossRefGoogle Scholar
  93. Pal, M., Verma, R. K., Krishan, S., & Tewari, S. K. (2011). Anti-termite activity of essential oil and its components from Myristica fragrans against Microcerotermes beesoni. Journal of Applied Sciences and Environmental Management, 15, 559–561.Google Scholar
  94. Pandey, A., Chattopadhyay, P., Banerjee, S., Pakshirajan, K., & Singh, L. (2012). Antitermitic activity of plant essential oils and their major constituents against termite Odontotermes assamensis Holmgren (Isoptera: Termitidae) of north East India. International Biodeterioration & Biodegradation, 75, 63–67.CrossRefGoogle Scholar
  95. Pearce, M. J. (1997). Laboratory culture and experimental techniques using termites. Chatham: Natural Resources Institute.Google Scholar
  96. Peres Filho, O., Dorval, A., Duda, M. J., & Moura, R. G. (2006). Nasutitermes sp. (Isoptera, Termitidae) response to extracts from four Brazilian woods. Scientia Forestalis/Forest. Sciences, 71, 51–54.Google Scholar
  97. Philip, H. (2004). Biology and control of the subterranean termite. Pest Management Factsheet 98–01.
  98. Poinar, G. O., Jr. (1979). The natural history of nematodes. Englewood Cliffs: Prentice Hall.Google Scholar
  99. Potter, M. F. (2004). Termites. In D. Moreland (Ed.), Handbook of pest control: The behavior, life history, and control of household pests (pp. 216–361). Cleveland: GIE Media.Google Scholar
  100. Raina, A., Blan, J., Doolittle, M., Lax, A., Boopathy, R., & Folkins, M. (2007). Effect of orange oil extract on the Formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 100, 880–885.PubMedCrossRefGoogle Scholar
  101. Rajagopal, D. (2002). Economically important termite species in India. Sociobiology, 41, 33–46.Google Scholar
  102. Ramanujam, B., Rangeshwaran, R., Sivakmar, G., Mohan, M., & Yandigeri, M. S. (2014). Management of insect pests by microorganisms. Proceedings of the Indian National Science Academy, 80, 455–471.CrossRefGoogle Scholar
  103. Rana, B. S., & Kachhawa, D. (2014). Study of bio-efficacy of entomopahogenic fungi for suppression of termite incidence in maize. International Journal of Plant Protection, 7, 77–381.CrossRefGoogle Scholar
  104. Ravindran, K., Qiu, D., & Sivaramakrishnan, S. (2015). Sporulation characteristics and virulence of Metarhizium anisopliae against subterranean termites (Coptotermes formosanus). International Journal of Microbiological Research, 6, 01–04.Google Scholar
  105. Rodrigues, A. M., Amusant, N., Beauchêne, J., Eparvier, V., Leménager, N., Baudasse, C., Espindola, L. S., & Stien, D. (2011). The termiticidal activity of Sextonia rubra (Mez) van der Werff (Lauraceae) extract and its active constituent rubrynolide. Pest Management Science, 67, 1420–1423.PubMedCrossRefGoogle Scholar
  106. Rust, M. K., & Saran, R. K. (2006). Toxicity, repellency, and transfer of chlorfenapyr against western subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 99, 864–872.PubMedCrossRefGoogle Scholar
  107. Sa, R. A., Napoleao, T. H., Santos, N. D. L., Gomes, F. S., Albuquerque, A. C., Xavier, H. S., Coelho, L. C. B. B., Bieber, L. W., & Paiva, P. M. G. (2008). Induction of mortality on Nasutitermes corniger (Isoptera, Termitidae) by Myracrodruon urundeuva heartwood lectin. International Biodeterioration & Biodegradation, 62, 460–464.CrossRefGoogle Scholar
  108. Samsuddin, A. S., Sajap, A. S., & Mohamed, R. (2016). Metarhizium anisopliae of peninsular Malaysia origin poses high pathogenicity toward Coptotermes curvignathus, a major wood and tree pest. The Malaysian forester, 78, 41–48.Google Scholar
  109. Santana, A. L. B. D., Maranhao, C. A., Santos, J. C., Cunha, F. M., Conceiçao, G. M., Bieber, L. W., & Nascimento, M. S. (2010). Antitermitic activity of extractives from three Brazilian hardwoods against Nasutitermes corniger. International Biodeterioration & Biodegradation, 64, 7–12.CrossRefGoogle Scholar
  110. Seo, S. H., Kim, J., Kang, J., Koh, S.-H., Ahn, Y.-J., Kang, K.-S., & Park, K. (2014). Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe). Pesticide Biochemistry and Physiology, 113, 55–61.PubMedCrossRefGoogle Scholar
  111. Seo, S. M., Kim, J., Lee, S. G., Shin, C. H., Shin, S. C., & Park, I. K. (2009). Fumigant antitermitic activity of plant essential oils and components from ajowan (Trachyspermum ammi), allspice (Pimenta dioica), caraway (Carum carvi), dill (Anethum graveolens), geranium (Pelargonium graveolens), and litsea (Litsea cubeba) oils against Japanese termite (Reticulitermes speratus Kolbe). Journal of Agriculture and Food Chemistry, 57, 6596–6602.CrossRefGoogle Scholar
  112. Shahid, A. A., Rao, A. Q., Bakhsh, A., & Husnain, T. (2012). Entomopathogenic fungi as biological controllers: New insights into their virulence and pathogenicity. Archives of Biological Sciences, 64, 21–42.CrossRefGoogle Scholar
  113. Shi, J., Li, Z., Izumi, M., Baba, N., & Nakajima, S. (2008). Termiticidal activity of diterpenes from the roots of Euphorbia kansui. Zeitschrift für Naturforschung. Section C, 63, 51–58.Google Scholar
  114. Shibutani, S., Yusuf, S., & Doi, S. (2006). Anti-termite (Isoptera) component from Artocarpus heterophyllus heartwood. Sociobiology, 47, 711–720.Google Scholar
  115. Shiny, K. S., & Remadevi, O. K. (2014). Evaluation of termiticidal activity of coconut shell oil and its comparison to commercial wood preservatives. European Journal of Wood and Wood Products, 72, 139–141.CrossRefGoogle Scholar
  116. Sileshi, A., Sori, W., & Dawd, M. (2013). Laboratory evaluation of entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana against termite, Macrotermes (Isoptera: Termitidae). Asian Journal of Plant Sciences, 12, 1–10.CrossRefGoogle Scholar
  117. Sileshi, G. W., Nyeko, P., Nkunika, P. O. Y., Sekematte, B. M., Akinnifesi, F. K., & Ajayi, O. C. (2009). Integrating ethno-ecological and scientific knowledge of termites for sustainable termite management and human welfare in Africa. Ecology and Society, 14(1), 48.CrossRefGoogle Scholar
  118. Sindhu, S. S., Rakshiya, Y. S., & Verma, M. K. (2011). Biological control of termites by antagonistic soil microorganisms. In A. Singh, N. Parmar, & R. C. Kuhad (Eds.), Bioaugmentation, biostimulation and biocontrol, soil biology (pp. 261–309). Berlin\Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  119. Singh, Y. (2007). Isolation and identification of bacteria having pathogenic interactions with termites (Isoptera). M. Sc. thesis, CCS Haryana Agricultural University, Hisar, pp. 104.Google Scholar
  120. Singh, N., & Kumar, S. (2008). Antitermite activity of Jatropha curcas Linn. biochemicals. Journal of Applied Sciences and Environmental Management, 12, 67–69.Google Scholar
  121. Smith, J. L., & Rust, M. K. (1990). Tunneling response and mortality of the western subterranean termite (Isoptera: Rhinotermitidae) to soil treated with termiticides. Journal of Economic Entomology, 83, 1395–1401.CrossRefGoogle Scholar
  122. Staples, J., & Milner, R. (1996). Metarhizium anisopliae as a mycotermiticide-laboratory behavioural bioassay. In: Wildey, K. B. (Ed.), Proceedings of the 2nd international conference on insect pests in the urban environment, Edinburgh, 7–10 July 1996, Exeter organizing committee of the international conference on insect pests in the urban environment, pp. 493.Google Scholar
  123. Stoll, G. (1986). Natural crop protection. Josef Margraf, Langen, West Germany, pp. 188.Google Scholar
  124. Stranes, R. L., Liu, L., & Marrane, P. G. (1993). History, use and future of microbial insecticides. American Entomologist, 39, 83–91.CrossRefGoogle Scholar
  125. Su, N. Y., Ban, P. M., & Scheffrahn, R. H. (1999). Longevity and efficacy of pyrethroid and organophosphate termiticides in field degradation studies using miniature slabs. Journal of Economic Entomology, 92, 890–898.CrossRefGoogle Scholar
  126. Su, N. Y., & Scheffrahn, R. H. (2000). Formosan subterranean termite, Coptotermes formosanus Shiraki (Insecta: Isoptera: Rhinotermitidae). EENY121 Department of Entomology and Nematology, UF/IFAS Extension. University of Florida.Google Scholar
  127. Sun, J., Fuxa, J. R., & Henderson, G. (2002). Sporulation of Metarhizium anisopliae and Beauveria bassiana on Coptotermes formosanus in vitro. Journal of Invertebrate Pathology, 84, 78–85.CrossRefGoogle Scholar
  128. Suszkiw, J. (1998). The Formosan termite: A formidable foe. Agribiological Research, 46, 4–9.Google Scholar
  129. Taylor, A. M., Gartner, B. L., Morell, J. J., & Tsunoda, K. (2006). Effect of heartwood extractive fractions of Thuja plicata and Chamaecyparis nootkatensis on wood degradation by termites or fungi. Journal of Wood Science, 52, 147–153.CrossRefGoogle Scholar
  130. Thompson, G. (2000). Termites. Tropical Topics News Letter No. 64, Tropical Savanna, Australia.Google Scholar
  131. Thompson, G. J., Kitade, O., Lo, N., & Crozier, R. H. (2004). On the origin of termite workers: Weighing up the phylogenetic evidence. Journal of Evolutionary Biology, 17, 217–220.PubMedCrossRefGoogle Scholar
  132. Thorne, B. L., & Carpenter, J. M. (1992). Phylogeny of the Dictyoptera. Systematic Entomology, 17, 253–268.CrossRefGoogle Scholar
  133. Trikojus, V. M. (1935). Some synthetic and natural antitermitic substances. Australian Chemical Institute Proceedings, 2, 171–176.Google Scholar
  134. Trudeau, D. (1989). Selection of entomophilic nematodes for control of the eastern subterranean termite, Reticultermes flavipes (Kollar) (Isoptera: Rhinotermitidae). Master’s thesis, University of Toronto, Toronto, Ontario, Canada, pp. 93.Google Scholar
  135. UNEP (United Nations Environment Programme). (1992). Montreal protocol assessment supplement, Methyl Bromide: Its science, technology, and economics. Synthesis Report of the Methyl Bromide Interim Scientific Assessment and Methyl Bromide Interim Technology and Economic Assessment.Google Scholar
  136. UNEP. (2000). Finding alternatives to Persistent Organic Pollutants (POPs) for termite management – Prepared by members of the UNEP/FAO/Global IPM Facility Expert Group on Termite Biology and Management.
  137. UNEP/FAO/Global IPM Facility Expert Group on Termite Biology and Management. (2000). Finding alternatives to persistent organic pollutants (POPs) for termite management, online at
  138. Upadhyay, R. K., Jaiswal, G., & Ahmad, S. (2010, September). Anti-termite efficacy of Capparis decidua and its combinatorial mixtures for the control of Indian white termite Odontotermes obesus (Isoptera: Odontotermitidae) in Indian soil. Journal of Applied Science and Environmental Management, 14, 101–105.Google Scholar
  139. Upadhyay, R. K., Jaiswal, G., Ahmad, S., Khanna, L., & Jain, S. C. (2012). Antitermite activities of C. decidua extracts and pure compounds against Indian white termite Odontotermes obesus (Isoptera: Odontotermitidae). Psyche, 2012, Article ID 820245, 9 p.Google Scholar
  140. Verma, R. K., & Verma, S. K. (2006). Phytochemical and termiticidal study of Lantana camara var. aculeata leaves. Fitotrapia, 77, 466–468.CrossRefGoogle Scholar
  141. Verma, S., Yadav, P. R., & Singh, R. (2001). Distribution of termites and yield loss in potato-based cropping sequence in western Uttar Pradesh. Potato Journal, 28, 119–120.Google Scholar
  142. Verma, S. K., Verma, R. K., & Saxena, K. D. (2005). Termiticidal triterpenoid from leaves of Lantana camara var. aculeate. Journal of the Institution of Chemists (India), 77, 23–25.Google Scholar
  143. Verma, M., Sharma, S., & Prasad, R. (2009). Biological alternatives for termite control: A review. International Biodeterioration & Biodegradation, 63, 959–972.CrossRefGoogle Scholar
  144. Verma, M., Pradhan, S., Sharma, S., Naik, S. N., & Prasad, R. (2011). Efficacy of karanjin and phorbol ester fraction against termites (Odontotermes obesus). International Biodeterioration & Biodegradation, 65, 877–882.CrossRefGoogle Scholar
  145. Verma, S., Verma, M., Sharma, S., & Malik, A. (2013). Determination of phytocomponents by GC-MS analysis of Jatropha curcas root and its termiticidal activity. International Journal of Ecology and Environmental Sciences, 39, 159–169.Google Scholar
  146. Verma, S., Sharma, S., & Malik, A. (2016). Termiticidal and repellency efficacy of botanicals against Odontotermes obesus. International Journal of Research in BioSciences, 5, 52–59.Google Scholar
  147. Weeks, B., & Baker, P. (2004). Subterranean termite (Isoptera: Rhinotermitidae) mortality due to entomopathogenic nematodes (Nematoda: Steinernematidae, Heterorhabditidae). University of Arizona, College of Agriculture Turfgrass and Ornamental Research Report, index at:
  148. Wood, T. G., & Sands, W. A. (1978). The role of termites in ecosystems. In M. V. Brian (Ed.), Production ecology of ants and termites (pp. 245–292). Cambridge: Cambridge University Press.Google Scholar
  149. Woodrow, R. J., & Grace, J. K. (1998). Field studies on the use of high temperatures to control Cryptotermes brevis (Isoptera: Kalotermitidae). Sociobiology, 32, 27–49.Google Scholar
  150. Wright, M. S., Raina, A. K., & Lax, A. R. (2005). A strain of the fungus Metarhizium anisopliae for controlling subterranean termites. Journal of Economic Entomology, 98, 1451–1458.PubMedCrossRefGoogle Scholar
  151. Yanagawa, A., Yokohari, F., & Shimizu, S. (2008). Defence mechanism of the termite, Coptotermes formosanus Shiraki, to entomopathogenic fungi. Journal of Invertebrate Pathology, 97, 165–170.PubMedCrossRefGoogle Scholar
  152. Yanagawa, A., Yokohari, F., & Shimizu, S. (2009). The role of antennae in removing entomopathogenic fungi from cuticle of the termite, Coptotermes formosanus. Journal of Insect Science, 9, 6.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Yii, J. E., Bong, C. F. J., King, J. H. P., & Kadir, J. (2016). Synergism of entomopathogenic fungus, Metarhizium anisopliae incorporated with Fipronil against oil palm pest subterranean termite, Coptotermes curvignathus. Plant Protection Science, 52, 35–44.CrossRefGoogle Scholar
  154. Yu, H., Gouge, D. H., & Baker, P. (2006). Parasitism of subterranean termites (Isoptera: Rhinotermitidae: Termitidae) by entomopathogenic nematodes (Rhabditida: Steinernematidae; Heterorhabditidae). Journal of Economic Entomology, 99, 1112–1119.PubMedCrossRefGoogle Scholar
  155. Yu, H., Gouge, D. H., Stock, S. P., & Baker, P. B. (2008). Development of entomopathogenic nematodes (Rhabditida: Steinernematidae; Heterorhabditidae) in the desert subterranean termite Heterotermes aureus (Isoptera: Rhinotermitidae). Journal of Nematology, 40, 311–317.Google Scholar
  156. Yu, H., Gouge, D. H., & Shapiro Ilan, D. I. (2010). A novel strain of Steinernema riobrave (Rhabditida: Steinernematidae) possesses superior virulence to subterranean termites (Isoptera: Rhinotermitidae). Journal of Nematology, 42, 91–95.PubMedPubMedCentralGoogle Scholar
  157. Yuan, Z., & Hu, X. P. (2011). Evaluation of differential antitermitic activities of Lantana camara oven-dried tissues against Reticulitermes virginicus (Isoptera: Rhinotermitidae). Insect Science., 18, 671–681.CrossRefGoogle Scholar
  158. Yuan, Z., & Hu, X. P. (2012). Repellent, antifeedant, and toxic activities of Lantana camara leaf extract against Reticulitermes flavipes (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 105, 2115–2121.PubMedCrossRefGoogle Scholar
  159. Zhong, J. H., & Liug, L. L. (2002). Termite fauna in China and their economic importance. Sociobiology, 40, 25–32.Google Scholar
  160. Zimmermann, G. (2007). Review on safety of the entomopathogenic fungus Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, 17, 553–596.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Center for Rural Development and TechnologyIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations